ICP-MS for ICH and USP<232>/<233>

Elemental impurity in pharmaceuticals

Presented by: Nopparat Vorapalawut Spectroscopy Product Specialist (Thailand)

Pharmaceutical Impurities

Existing Elemental Impurities Test USP <231>

- USP <231> is a test for "heavy metals"
- Test indicates the total content of metal impurities using a colored sulfide precipitate
 - Over 100 years old (circa 1905)
 - Compared to 0.001% (10 ppm) Lead standar
 - Sample ignition and ashing at 600 $^\circ\text{C}$
 - Addition of H2S
 - Visual (subjective) comparison of color of metal sulfide precipitates

Trigger for Development of a New Method: USP<231> Ashing Step Leads to Loss of Volatiles

Low recovery for several elements due to high temperature ashing step in USP<231> (600°C ashing leads to **almost total loss of volatile analytes** such as Hg, Sn and Sb).

		Test	t Solution with	h 10 ppm Heavy Me	etal		
		Pharmacopeia	ICP Sam	ICP Sample Preparation			
Heavy Metal Spiked	After Ev	r Hot Plate aporation	After 6	00 °C Ashing	After Acid Digestion		
	PPM	% Recovery	PPM	% Recovery	PPM	% Recovery	
Silver (Ag)	5.2	52	1.8	18	9.4	94	
Arsenic (As)	3.4	34	5.2	52	9.0	90	
Bismuth (Bi)	10.5	105	5.4	54	9.9	99	
Cadmium (Cd)	11.0	110	9.4	94	10.6	106	
Copper (Cu)	10.4	104	4.8	48	10.5	105	
Mercury (Hg)	5.6	56	0.6	6	10.7	107	
Molybdenum (Mo)	9.5	95	4.7	47	9.8	98	
Lead (Pb)	12.5	125	9.6	96	10.5	105	
Antimony (Sb)	4.6	46	0.5	5	10.4	104	
Tin (Sn)	7.0	70	0.3	3	10.9	109	

Table 1. Effects on Test Samples of Heating/Temperature on Volatilization of Heavy Metals Using ICP Detection

Pharmacopeial Forum Stimuli Vol. 34(6) [Nov.-Dec. 2008]

Alternative (ICP) Sample Prep Preserves Volatiles

Issue of low recoveries is eliminated when ICP (closed-vessel acid digestion) sample prep is used

	Test Solution with 10 ppm Heavy Metal									
		Pharmacopeia	l Methodolog	у	ICP Sam	ple Preparation				
Heavy Metal Spiked	Afte Ev	r Hot Plate aporation	After 6	00 °C Ashing	After Acid Digestion					
	PPM	% Recovery	PPM	% Recovery	PPM	% Recovery				
Silver (Ag)	5.2	52	1.8	18	9.4	94				
Arsenic (As)	3.4	34	5.2	52	9.0	90				
Bismuth (Bi)	10.5	105	5.4	54	9.9	99				
Cadmium (Cd)	11.0	110	9.4	94	10.6	106				
Copper (Cu)	10.4	104	4.8	48	10.5	105				
Mercury (Hg)	5.6	56	0.6	6	10.7	107				
Molybdenum (Mo)	9.5	95	4.7	47	9.8	98				
Lead (Pb)	12.5	125	9.6	96	10.5	105				
Antimony (Sb)	4.6	46	0.5	5	10.4	104				
Tin (Sn)	7.0	70	0.3	3	10.9	109				

Table 1. Effects on Test Samples of Heating/Temperature on Volatilization of Heavy Metals Using ICP Detection

Pharmacopeial Forum Stimuli Vol. 34(6) [Nov.–Dec. 2008]

Overview of USP

Heavy Metals Chapters (current and proposed)

Terminology changing:

"Heavy Metals" \rightarrow "Elemental Impurities"

Elemental Impurities – Latest Method Updates

February 2017 – final harmonization between USP & ICH

Elements, concentrations, route of administration, risk assessment

AA, ICP-OES & ICP-MS

Validation criteria

ICH Q2 (R1) & USP<1225>

January 1, 2018 – Pharma companies must comply with Elemental Impurities Analysis

Harmonized PDE Levels – Same for USP and ICH Permitted Daily Exposures (PDE)

ICH/USP Class	Element	Oral PDE (μg/day)	Parenteral PDE (µg/day)	Inhalational PDE (µg/day)
Class 1	Cd - Cadmium	5	2	2
	Pb - Lead	5	5	5
	As - Arsenic (inorganic)	15	15	2
	Hg - Mercury (inorganic)	30	3	1
Class 2A	Co - Cobalt	50	5	3
	V - Vanadium	100	10	1
	Ni - Nickel	200	20	5
Class 2B	TI - Thallium	8	8	8
	Au - Gold	100	100	1
	Pd - Palladium	100	10	1
	lr - Iridium	100	10	1
	Os - Osmium	100	10	1
	Rh - Rhodium	100	10	1
	Ru - Ruthenium	100	10	1
	Se - Selenium	150	80	130
	Ag - Silver	150	10	7
	Pt - Platinum	100	10	1
Class 3	Li - Lithium	550	250	25
	Sb - Antimony	1200	90	20
	Ba - Barium	1400	700	300
	Mo - Molybdenum	3000	1500	10
	Cu - Copper	3000	300	30
	Sn - Tin	6000	600	60
	Cr - Chromium	11000	1100	3

- PDE: Permissible Daily Exposure. Defined in the USP <232> for each element.
- Different values are defined depending on pathways to take the drug.
 - Oral, Parenteral, and Inhalational
- Unit: µg / day

Drugs intended for <u>inhalational</u> or <u>parental (injectable)</u> administration have much lower limits that drugs taken orally.

Title

What Improvements Will USP<232>/ICH Q3D Offer

New list of analytes and much lower limits

- List of elements that are controlled in drug products is based on **patient safety**, not method capability
- Limits based on toxicological risk
- Limits are modified depending on intended route of administration

Sample Preparation methods ensure no loss of volatiles

Recommended sample digestion procedures include closed-vessel microwave digestion

Quantitative and specific analytical methods

- Recommended analytical (instrumental) procedures are ICP-OES and ICP-MS
- Quantitative analysis of individual analytes
- Subjective, colorimetric test that gives a result for total metals will no longer be acceptable

Elemental Impurities - Procedure

- Characterize your Material
- Which Impurities Do You Need to Analyze?
- Determine 'J'
- Sample/Standard Preparation
- Instrumental Technique to be Used
 - ICP-MS
 - ICP-OES
- Validation Procedure
 - Limit Test
 - Quantitative Test

Characterizing your material

- Drug product
 - Oral
 - Parenteral
 - Inhalational

Drug components

- API

- ...

- Excipient
- Raw material

Elemental Impurities - Procedure

- Characterize your Material
- Which Impurities Do <u>You</u> Need to Analyze?
- Determine 'J'
- Sample/Standard Preparation
- Instrumental Technique to be Used
 - ICP-MS
 - ICP-OES
- Validation Procedure
 - Limit Test
 - Quantitative Test

Determining Which Impurities to Analyze

		If Intentionally Added	lf No	ot Intention	ally Added			If Intentionally Added	If No	ot Intentiona	ally Added
Element	Class	(All Routes)	Oral	Parenteral	Inhalation	Element	Class	(All Routes)	Oral	Parenteral	Inhalation
Cd	1	yes	yes	yes	yes	Rh	2B	yes	no	no	no
Pb	1	yes	yes	yes	yes	Ru	2B	yes	no	no	no
As	1	yes	yes	yes	yes	Se	2B	yes	no	no	no
Hg	1	yes	yes	yes	yes	Ag	2B	yes	no	no	no
Со	2A	yes	yes	yes	yes	Pt	2B	yes	no	no	no
V	2A	yes	yes	yes	yes	Li	3	yes	no	yes	yes
Ni	2A	yes	yes	yes	yes	Sb	3	yes	no	yes	yes
TI	2B	yes	no	no	no	Ва	3	yes	no	no	yes
Au	2B	yes	no	no	no	Мо	3	yes	no	no	yes
Pd	2B	yes	no	no	no	Cu	3	yes	no	yes	yes
lr	2B	yes	no	no	no	Sn	3	yes	no	no	yes
Os	2B	yes	no	no	no	Cr	3	yes	no	no	yes

Determining Which Impurities to Analyze

		If Intentionally Added	lf No	ot Intention	ally Added			If Intentionally Added	If No	ot Intentiona	ally Added
Element	Class	(All Routes)	Oral	Parenteral	Inhalation	Element	Class	(All Routes)	Oral	Parenteral	Inhalation
Cd	1	yes	yes	yes	yes	Rh	2B	yes	no	no	no
Pb	1	yes	yes	yes	yes	Ru	2B	yes	no	no	no
As	1	yes	yes	yes	yes	Se	2B	yes	no	no	no
Hg	1	yes	yes	yes	yes	Ag	2B	yes	no	no	no
Со	2A	yes	yes	yes	yes	Pt	2B	yes	no	no	no
V	2A	yes	yes	yes	yes	Li	3	yes	no	yes	yes
Ni	2A	yes	yes	yes	yes	Sb	3	yes	no	yes	yes
TI	2B	yes	no	no	no	Ва	3	yes	no	no	yes
Au	2B	yes	no	no	no	Мо	3	yes	no	no	yes
Pd	2B	yes	no	no	no	Cu	3	yes	no	yes	yes
lr	2B	yes	no	no	no	Sn	3	yes	no	no	yes
Os	2B	yes	no	no	no	Cr	3	yes	no	no	yes

Class 1 & 2A must be analyzed for Oral, Parenteral and Inhalational Materials

Determining Which Impurities to Analyze

		If Intentionally Added	lf No	ot Intention	ally Added			If Intentionally Added	If No	ot Intention	ally Added
Element	Class	(All Routes)	Oral	Parenteral	Inhalation	Element	Class	(All Routes)	Oral	Parenteral	Inhalation
Cd	1	yes	yes	yes	yes	Rh	2B	yes	no	no	no
Pb	1	yes	yes	yes	yes	Ru	2B	yes	no	no	no
As	1	yes	yes	yes	yes	Se	2B	yes	no	no	no
Hg	1	yes	yes	yes	yes	Ag	2B	yes	no	no	no
Со	2A	yes	yes	yes	yes	Pt	2B	yes	no	no	no
V	2A	yes	yes	yes	yes	Li	3	yes	no	yes	yes
Ni	2A	yes	yes	yes	yes	Sb	3	yes	no	yes	yes
TI	2B	yes	no	no	no	Ba	3	yes	no	no	yes
Au	2B	yes	no	no	no	Мо	3	yes	no	no	yes
Pd	2B	yes	no	no	no	Cu	3	yes	no	yes	yes
lr	2B	yes	no	no	no	Sn	3	yes	no	no	yes
Os	2B	yes	no	no	no	Cr	3	yes	no	no	yes

Li, Sb and Cu must be analyzed for parenteral materials

Determining Which Impurities to Analyze

		If Intentionally Added	lf No	ot Intention	ally Added			If Intentionally Added	If No	ot Intentiona	ally Added
Element	Class	(All Routes)	Oral	Parenteral	Inhalation	Element	Class	(All Routes)	Oral	Parenteral	Inhalation
Cd	1	yes	yes	yes	yes	Rh	2B	yes	no	no	no
Pb	1	yes	yes	yes	yes	Ru	2B	yes	no	no	no
As	1	yes	yes	yes	yes	Se	2B	yes	no	no	no
Hg	1	yes	yes	yes	yes	Ag	2B	yes	no	no	no
Со	2A	yes	yes	yes	yes	Pt	2B	yes	no	no	no
V	2A	yes	yes	yes	yes	Li	3	yes	no	yes	yes
Ni	2A	yes	yes	yes	yes	Sb	3	yes	no	yes	yes
TI	2B	yes	no	no	no	Ва	3	yes	no	no	yes
Au	2B	yes	no	no	no	Мо	3	yes	no	no	yes
Pd	2B	yes	no	no	no	Cu	3	yes	no	yes	yes
lr	2B	yes	no	no	no	Sn	3	yes	no	no	yes
Os	2B	yes	no	no	no	Cr	3	yes	no	no	yes

Class 3 elements must be analyzed for inhalational materials

Procedure for USP/ICH Analysis Confirm PDE Limits for Your Material

Element	Class	Oral PDE (µg/day)	Parenteral PDE (µg/day)	Inhalation PDE (µg/day)	Element	Class	Oral PDE (µg/day)	Parenteral PDE (µg/day)	Inhalation (µg/da)
Cd	1	5	2	2	Rh	2B	100	10	1
Pb	1	5	5	5	Ru	2B	100	10	1
As	1	15	15	2	Se	2B	150	80	130
Hg	1	30	3	1	Ag	2B	150	10	7
Со	2A	50	5	3	Pt	2B	100	10	1
V	2A	100	10	1	Li	3	550	250	25
Ni	2A	200	20	5	Sb	3	1200	90	20
TI	2B	8	8	8	Ba	3	1400	700	300
Au	2B	100	100	1	Мо	3	3000	1500	10
Pd	2B	100	10	1	Cu	3	3000	300	30
lr	2B	100	10	1	Sn	3	6000	600	60
Os	2B	100	10	1	Cr	3	11000	1100	3

Elemental Impurities - Procedure

- Characterize your Material
- Which Impurities Do You Need to Analyze?
- Determine 'J'
- Sample/Standard Preparation
- Instrumental Technique to be Used
 - ICP-MS
 - ICP-OES
- Validation Procedure
 - Limit Test
 - Quantitative Test

J Value Calculations

• USP 233 uses the J value as an important Figure of Merit;

Permitted Daily Exposures (PDE) and J Value Example

A drug package insert

- Soluble non-ionic iron preparation -**Ferromia**[®] Tablets 50mg

2. Prod	uct descriptio	n				
Brand	Dosage form	A	Appearanc	e		
name	and identifica- tion code	Face	Reverse	Lateral	Description	
FERROMI	Film-coated tablets	(S) 301	\bigcirc	0	White	
Tablets 50 1	ng S301	Diameter (mm) 10.3	Weight (mg) 550	Thickness (mm) 5.0		

DOSAGE AND ADMINISTRATION

FERROMIA Tablets 50 mg:

The usual adult dosage for oral use is 100-200 mg as elemental iron (2-4 tablets) daily in one or two divided doses after meals.

The dosage may be adjusted depending on the patient's age and symptoms.

> Sample preparation: Assume, 1 tablet is digested and diluted to 100ml.

- Way of intake: Oral
- Max. Daily Dose: 4 tablets x 0.55g = 2.2 g
- Total Dilution : 100g / (0.55g x 1 tablet) = 181.8

 $J = \frac{PDE}{Total \ Dil. \times Max. \ Daily \ Dose}$

Element	A: Oral Daily Dose PDE (µg/day)	B. Total Dil	C. Max. Daily Dose (g)	J (μg/g, ppm)
Cd	5	181.8	2.2	0.0125
Pb	5	181.8	2.2	0.0125
Inorganic As	15	181.8	2.2	0.0375
Inorganic Hg	30	181.8	2.2	0.0750
Ir,Os,Pd,Pt,Rh,Ru	100	181.8	2.2	0.250
Cr	11000	181.8	2.2	7.50
Мо	3000	181.8	2.2	7.50
Ni	200	181.8	2.2	0.500
V	100	181.8	2.2	0.250
Cu	3000	181.8	2.2	7.50

Elemental Impurities - Procedure

- Characterize your Material
- Which Impurities Do You Need to Analyze?
- Determine 'J'
- Sample/Standard Preparation
- Instrumental Technique to be Used
 - ICP-MS
 - ICP-OES
- Validation Procedure
 - Limit Test
 - Quantitative Test

Sample Preparation Procedures

Elemental Impurities - Procedure

- Characterize your Material
- Which Impurities Do You Need to Analyze?
- Determine 'J'
- Sample/Standard Preparation
- Instrumental Technique to be Used
 - ICP-MS
 - ICP-OES
- Validation Procedure
 - Limit Test
 - Quantitative Test

Which instrument is the best for USP<232>,<233> Choosing ICP-MS or ICP-OES

Decision will typically come down to DL

ICP-OES

- Mainly oral dose medicines PDE limits are higher
- Large sample volume available (e.g. bulk excipients); no dilution

ICP-MS

- All dosage forms: Parenteral, inhalational, or oral administration
- Small sample amounts available (e.g. APIs); large dilution needed
- Speciation for As/Hg

Elemental Impurities - Procedure

- Characterize your Material
- Which Impurities Do You Need to Analyze?
- Determine 'J'
- Sample/Standard Preparation
- Instrumental Technique to be Used
 - ICP-MS
 - ICP-OES
- Validation Procedure
 - Limit Test
 - Quantitative Test

Validation Procedure

Limit Test

- System suitability must be evaluated prior to any sample analysis (at "J", accounting for dilution)
- Limit of Detection
 - Standard Solution SRM for the target elements at the target concentration ("J") for each
 - Spike 1 Actual sample spiked with SRM at the target concentration ("J")
 - Spike 2 Actual sample spiked with SRM at 80% of J
 - Acceptance:
 - ✓ Average of triplicate measurements of <u>Spike 1</u> is within +/- 15% of triplicate measurements of <u>Standard Solution</u>.
 - ✓ Spike 2 solution < Standard solution
- Precision
 - Six (N=6) samples of material under test spiked with SRM for the target analytes
 - Acceptance: Relative standard deviation (%RSD) 20% for each Target Element.
- Specificity
 - The procedure must be able to unequivocally assess each Target Element in the presence of components that may be expected to be present, including other Target Elements and matrix components.

Validation Procedure Quantitative Test

- Accuracy
 - Standard Solution 3 replicate SRM solutions containing 50%-150% J of the target analytes
 - Test Samples 3 replicate samples under test spiked with SRM at 50%-150% J
 - Acceptance <u>70%-150% spike recovery</u> at each concentration
- Precision
 - Test Samples Six samples spiked with target analytes at J
 - Acceptance Standard deviation, 20 %RSD

Intermediate precision

- Repeatability Test Repeat analysis (choose one of the following)
 - > On a different day
 - > With a different instrument
 - With a different analyst
- Acceptance 25 %RSD for each target analyte
- Specificity
 - False-positive and false-negative check (interference check)

Agilent ICP-MS Family An optimized solution for any ICP-MS application

Agilent's ICP-MS Keys to high quality unequivocal data

Handle varied, challenging samples

Simplify preparation and measurement of a wide range of different sample types

Robust Plasma

Superior sensitivity across all masses

Consistently achieve the required DLs for all critical, regulated trace analytes

Confidence in results

Provide reliable, accurate, verifiable results the first time every time

Required analytical range

Measure majors and traces in a single analytical run

Robust ICP-MS Plasma CeO⁺ to Ce⁺ Ratio (Oxide Ratio) is Critical Parameter for ICP-MS

Robust ICP-MS Plasma

CeO⁺ to Ce⁺ Ratio is Critical Parameter for ICP-MS

Low CeO/Ce ratio indicates robust plasma = better matrix tolerance

Agilent's ICP-MS Keys to high quality unequivocal data

Superior sensitivity across all masses

Handle varied, challenging samples

Simplify preparation and measurement of a wide range of different sample types Consistently achieve the required DLs for all critical, regulated trace analytes

High Ion Transmission

Confidence in results

Provide reliable, accurate, verifiable results the first time every time

Required analytical range

Measure majors and traces in a single analytical run

Key to Superior Sensitivity For All Masses Agilent ICP-MS Off-Axis Lens Assembly

- **Extract** the maximum number of ions from the interface, using low voltage for stability
- 2. <u>Focus all masses</u> efficiently to provide superior sensitivity for all elements
- 3. Separate ions from photons and neutrals

Low voltage deflection minimizes mass bias

The Agilent Off-Axis lens assembly uniquely provides high sensitivity and low background **across all masses**

Analytical Requirements in the Inorganic Laboratory Keys to high quality unequivocal data

Handle varied, challenging samples

Simplify preparation and measurement of a wide range of different sample types

Superior sensitivity across all masses

Consistently achieve the required DLs for all critical, regulated trace analytes

Confidence in results

Provide reliable, accurate, verifiable results the first time every time

Interference Management

Required analytical range

Measure majors and traces in a single analytical run

Challenging for ICP-MS analysis

Polyatomic Interferences

Overlap of a molecular ion on the analyte of interest

- Polyatomics are nearly always composed of just two elements, e.g. ArO⁺, S₂⁺
- Some depend on the matrix, others depend on the solvent or water, and others originate from plasma gases

	EXAMPLE POLYA	TOMIC INTERFE	ERENCES
Mass	Analyte	Likely Cause	Favorable Conditions
28	Si	СО	only high [C] sample
28	Si	N ₂	Most aq. amples
39	K	ArH	any sample
40	Са	Ar	any sample
44	Са	CO ₂	only high [C] sample
44	Са	SiO	only high [Si] sample
51	V	CIO	only high [Cl] sample
56	Fe	ArO	most aq. Samples
64	Cu	S ₂	only high [S] sample
75	As	ArCl	only high [Cl] sample
78	Se	Ar ₂	any sample

He Mode For Multiple Analytes in Complex Matrices ORS separates analyte ions from interfering ions

Background spectra in various matrices: 5% HNO₃ **5% HCI** 1% **IPA** 1% H₂SO₄ ALL peaks due to polyatomic ion interferences. Overlap all 1st row transition elements

He Cell Mode Removes Common Polyatomic Ions Main cause of interferences in ICP-MS

Analytical Requirements in the Inorganic Laboratory Keys to high quality unequivocal data

Handle varied, challenging samples

Simplify preparation and measurement of a wide range of different sample types

Superior sensitivity across all masses

Consistently achieve the required DLs for all critical, regulated trace analytes

Confidence in results

Provide reliable, accurate, verifiable results the first time every time

Required analytical range

Measure majors and traces in a single analytical run

Wide Dynamic Range

Agilent ICP-MS Detector Linear Range Gives Wide Analytical Range 10-11 orders of dynamic range

Can detect a trace element like uranium down to 0.1 ppt (0.0000001 ppm) and a major element such as sodium in 1:10 seawater at 1,800 ppm – in the same run!

On size scale, that's the same as being able to accurately measure the length of an ant and the diameter of the earth – on the same instrument!

Uses Latest Revision of ICP-MS MassHunter

Tas Navigator • s x Indexto pre Auropation Surget Indexto Task Navigator • s x I Hordware Cachhoard Acquiston Song Tune Modes Element Selection Sangle Intoducton I Sequence	Term Made Order 12 MS MacHader	- 8 ×
Sample List Conve Aqualition Conve Result Online Data Analysis	Early Maintenance Feedback User Maintenance Counters Instrument Counters Deck Foreline Pump DI Image Eveline Pump DI Image Eveline Pump DI Image Eveline Pump DI Vecuum ON Days: 20/30 Image Eveline Pump DI Image Eveline Pump DI Image Eveline Pump DI Image Eveline Pump DI Vecuum ON Days: 20/30 Image Eveline Pump DI Image Eveline Pump DI	© setting
langut	▲ 1000/20 15.9 c1 3004. Poure spolege ent	renced () () () () () () () () () () () () ()

ICP-MS MassHunter 5.1:

- Completely new User Interface and Workflow
- New productivity tools
- New Smart ICP-MS monitors and checks
- Improved ICP Go option
- New, interactive Help & Learning Center

New Method Setup and Ease of Use Tools

Guided method development tools and templates included as standard

S	Select Preset Method	t Preset Method		
	Application Method Gene	ric Method		
	Title	Summary		*
	Drinking Water (with He)	7900 Application Method for Drinking Water (with ORS)		
_	ChP	7900 Application Method for Elemental Impurities in Pharma, using China Pharmacopoeia		
	USP<232>/ICH Q3D	7900 Application Method for Elemental Impurities in Pharma, using USP<232>/ICH Q3D		
	EPA200.8	7900 Application Method for EPA200.8 (No minerals, without OKSS)		
	EPA6020	7900 Application Method for EPA6020		

Compatible Sample Types:

Application method for low matrix aqueous or acidic samples (up to 0.1% Total Dissolved Solids), including drinking water, tap water, industrial water, except seawater. Also suitable for closed-vessel acid digested or extracted samples, after dilution to <0.1% Total Dissolved Solids.

Pre-Defined Analytes: Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Mo, Rh, Ag, Cd, Sn, Ba, Hg, Tl, Pb, Th, U

Comment:

Method is suitable only for the **7900**, due to the short pre-defined cell gas stabilization time. Uses Low Matrix plasma conditions, and no gas, and He cell modes.

Required Hardware:

7900, x-Lens, Micro Mist Nebulizer

- Preset Methods for regulated analysis
- **Method Wizard** guided method development for everything else
- Predefined report templates for many enviro & pharma apps

The method setup tools assist operators regardless of knowledge or experience

OK

21 CFR Part 11, EU Annex 11

- Specific Televist (1975) - 1 (1974) - 1 (1974)							
s in the factors have been been set to be set out							
5 - 4 S -							
-	Tati and out had a second second second						
South Street B	beneftent id beiteren bei er beiter - Eberteren ef berteriterant -						
Terrolice manufacture lines.							
ophan .							
	TO M IN ADDRESS 11 Mart						
entresi ficile Latore	Wales waits the ICP RIC Vessel is the						
And Server 1	Wartstadoe						
PORT -							
AMONTHY OF	Contraction Contraction						
Andrew Activity	- Fancles						
The book of the second	P***						
Sindersteiner	i source ce						
toolog Tedramon	1070 mag-						
	A Breatler II for ye						
rishing them							
riel.top "Box	The serve is desceived						

Control the instrument for data acquisition and processing

MassHunter software

🚡 Spec	troccopy Configuration Manage			
	choto View Confederation Audit 2 47 40 11 7 minimize (a) Projects (affection)	tual Collars Hats Current organizatio entimeer 전 양 유식 41 다		
	Encope See Freedo	Reserved - Onsage General Violant Conjecture General Violant Conjecture A Sector Violant Conjecture A Sector Violant Conjecture	-	
			A. 441.000.00	
in the second se	Conservations Conservation	Navarči pre Alto 2 – E Photoparani 2 – E Photoparani		
	To make how To make how To make completions	Line Andrease and Rease 21 November Jonate Press		
	To mails feel lister tax preventing To prevent term Th some active to Th some reactive to Th some reactive to Th some reactive to The some reactive to an Annual Elitic Annual Annual International Control - Annual	The second		

Manage groups, projects, users and user profiles

User Access Control (UAC)

Administration of databases and data

SDA or OpenLAB

SOP for Pharma Analysis using Agilent ICP-MS

Standard Operating Procedure template for Elemental Impurity analysis is included with the Solution-Ready Agilent ICP-MS

SOP includes:

- Method summary and analyte list
- Sample preparation details
- Calibration and interferences
- Pre-set Method parameters
- Method validation and reports
- Troubleshooting guide

Method template, reports and supporting documentation included.

