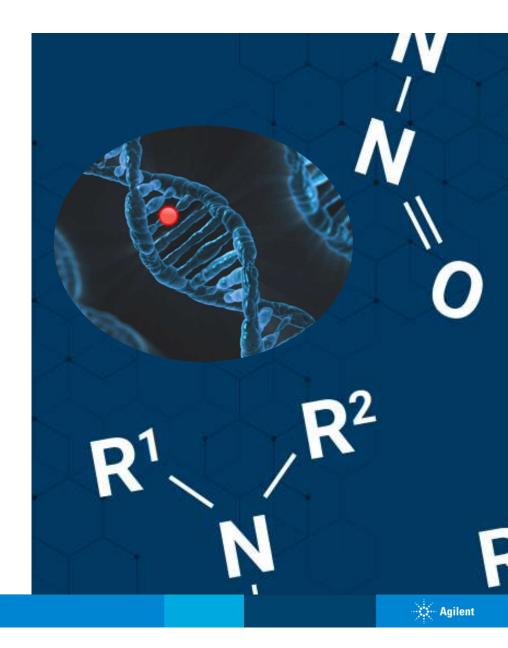
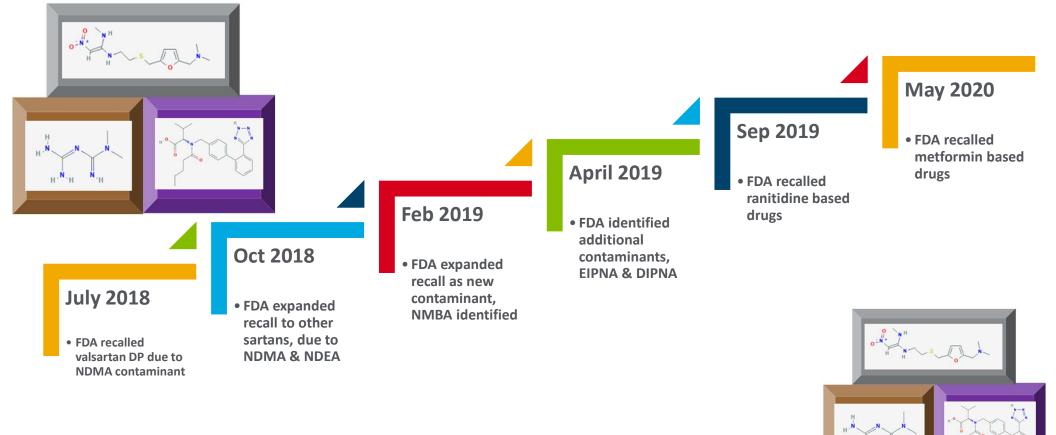

Nitrosamines Analysis in Pharmaceuticals by LC-MS/MS

Confidently Detect and Quantify Mutagenic Impurities in APIs and Drug Products

Thanong Phueaouan LC/MS Product Specialist

DE91188398




Mutagenic impurities

Mutagenic impurities in APIs and drug products pose a significant risk to health and safety even in small quantities—and thus are a major concern for drug makers.

Mutagenic impurities can damage DNA, leading to mutations and potentially cancer. Efforts to address and control the presence of trace levels of mutagenic impurities is of special concern to global regulators.

Nitrosamines in Recent News!

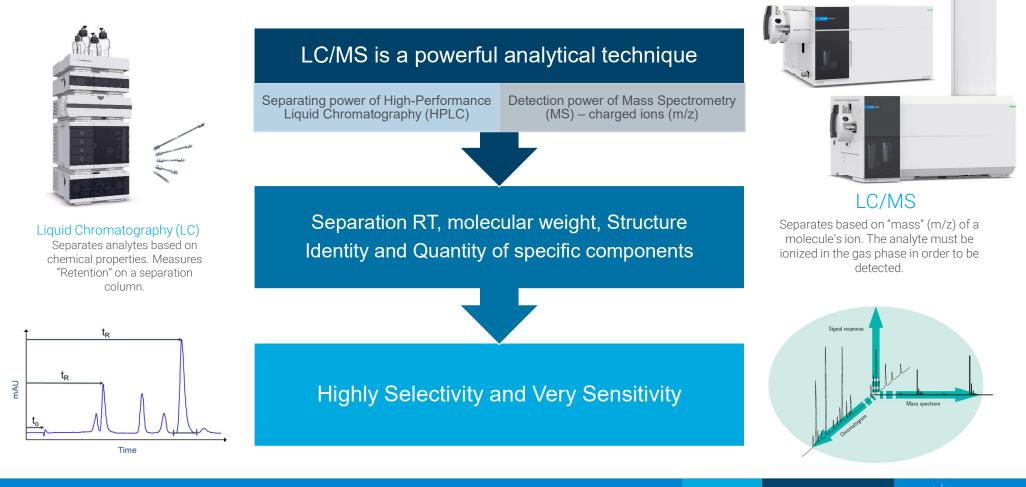
For detailed info, refer to: FDA Press Releases; EMA Press Releases

7 March 15, 2024

For Research Use Only. Not for use in diagnostic procedures.

Formation of Nitrosamines

Nitrosamines are formed by chemical reactions that occur during API manufacturing whether from:


- starting materials
- Intermediates
- Reactants
- reuse of solvents
- and by products

They can form through degradation products generated during formulation or storage or from environmental contaminants.

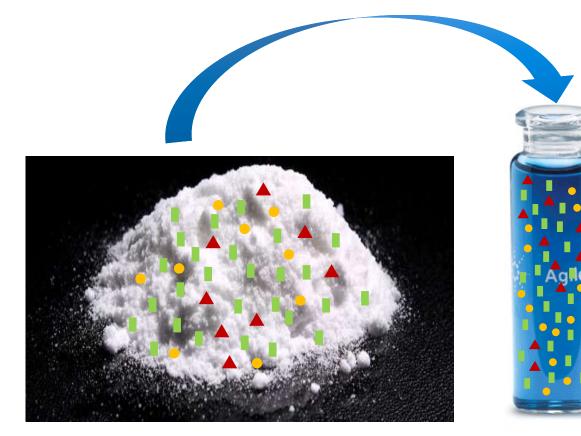
🔆 Agilent

What is Chromatography-Mass Spectrometry?

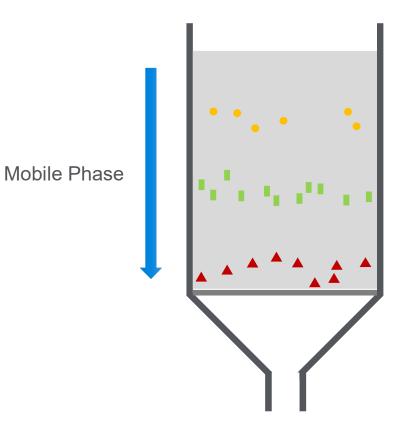
High Pressure Liquid Chromatography

Analysis of active pharmaceutical ingredients by High Pressure Liquid Chromatography (HPLC)

Agilent

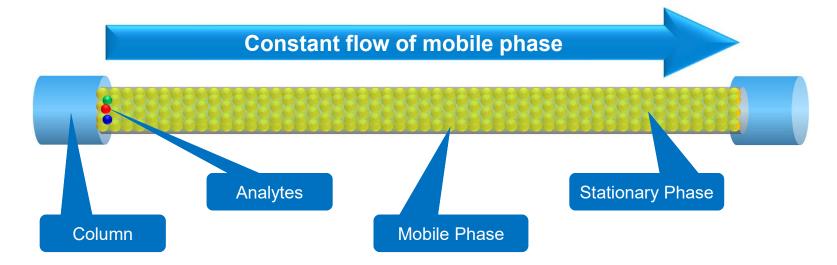

A typical requirement of the pharmaceutical industry is the quality control of active ingredients (

It is very important to identify drug impurities ($\bullet \blacktriangle$) that may occur during synthesis or by decomposition of the active ingredient.


Quality control ensures patient safety.

Step 1: Tablet Dissolution and Substance Release

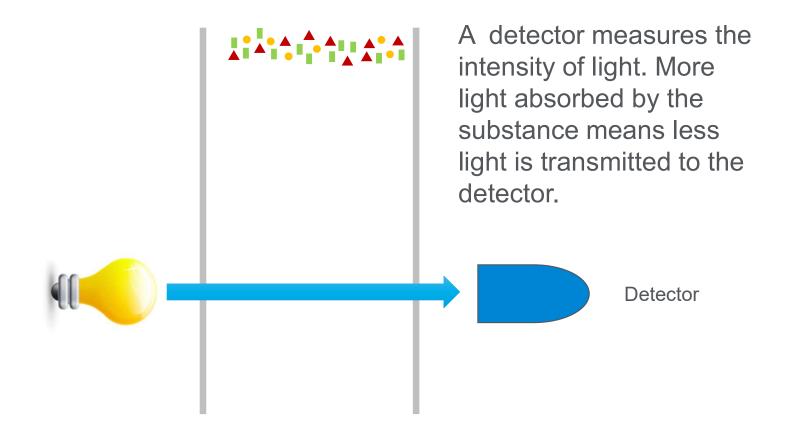
Step 2: Separation



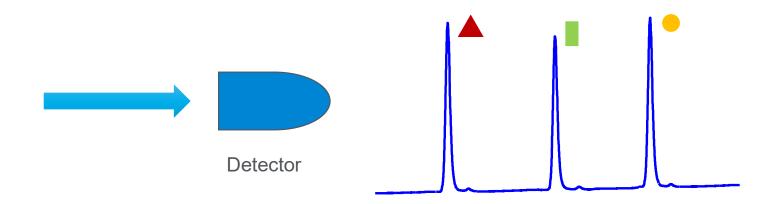
This means the substances reach the end of the column at different times.

Thereby the substances in the tablet are separated.

Agilent

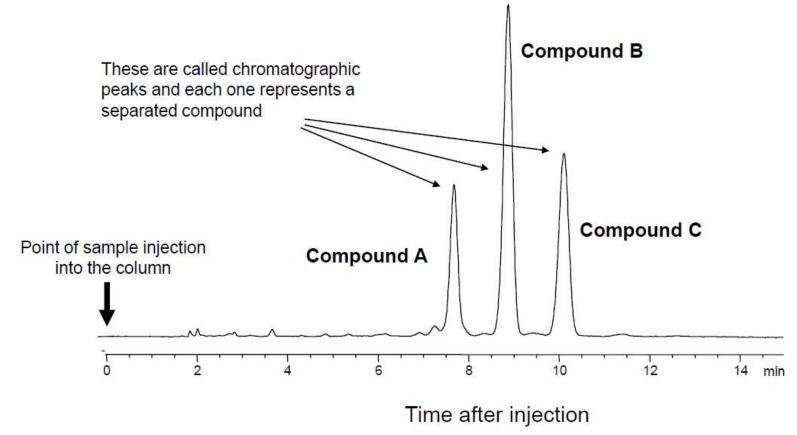

The Chromatographic Process Introduction

The stationary phase retains analytes due to various interactions.

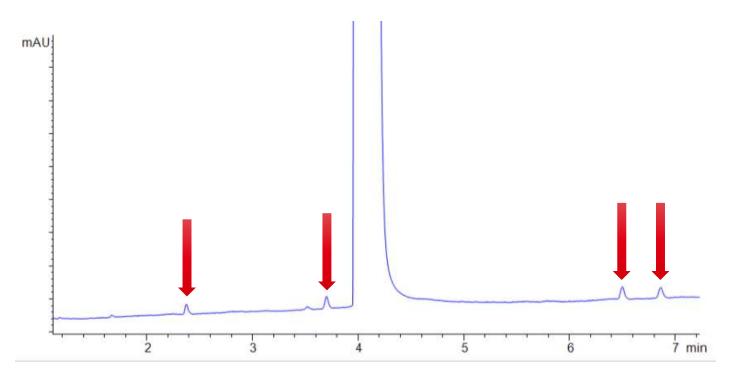

When different chemical components pass through the column at different rates they become separated in single zones.

Step 3: Quantitative Determination of Substances

🔆 Agilent


Step 3: Quantitative Determination of Substances

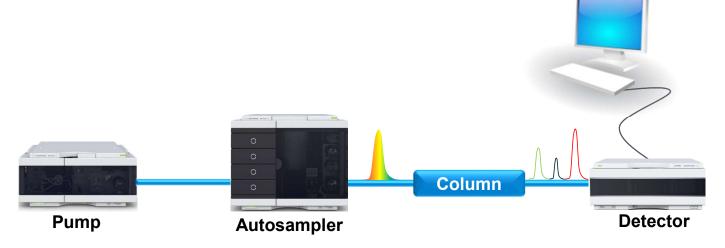
The detector records the light intensity. Reducing light intensity produces a detector response, a so-called "peak".

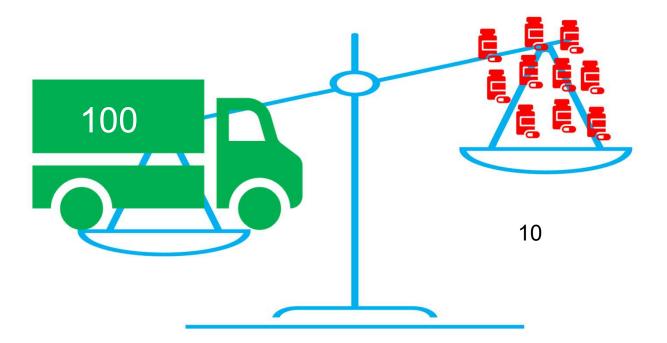

Peak height or area corresponds to the reduction of light intensity by absorption of the substance.

HPLC is an abbreviation for High Performance Liquid Chromatography

Example: Analysis of an Active Ingredient

Impurities must not reach certain thresholds, to ensure patient safety.





HPLC System General Design Introduction

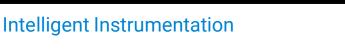
- Pump with Degasser : Deliver flow of solvents/buffers
- Autosampler : Inject sample
- Column (installed in a Column Compartment)
- Detector : To detect compound (Could be MS, DAD, UV, etc.)
- Computer with control software

Percent concentration

10 100

PPM – Part per Million

$$1 \text{ ppm} = \frac{1}{1,000,000}$$


PPB – Part per Billion

$$1 \text{ ppb} = \frac{1}{1,000,000,000}$$

Next-Gen LC/TQ Agilent's new high-end LC/TQ platform

AI-Powered Tuning, Early Maintenance Feedback Intelligent Reflex

Workflows: "Discovery" to "Routine Analysis"

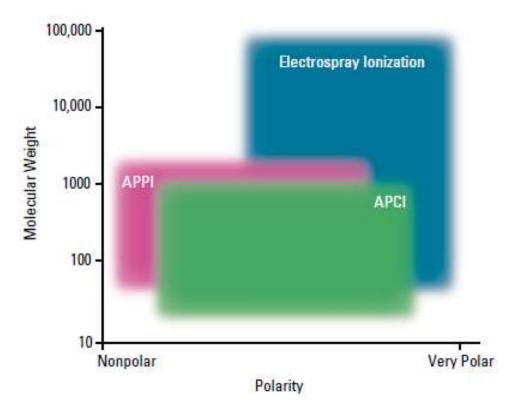

8

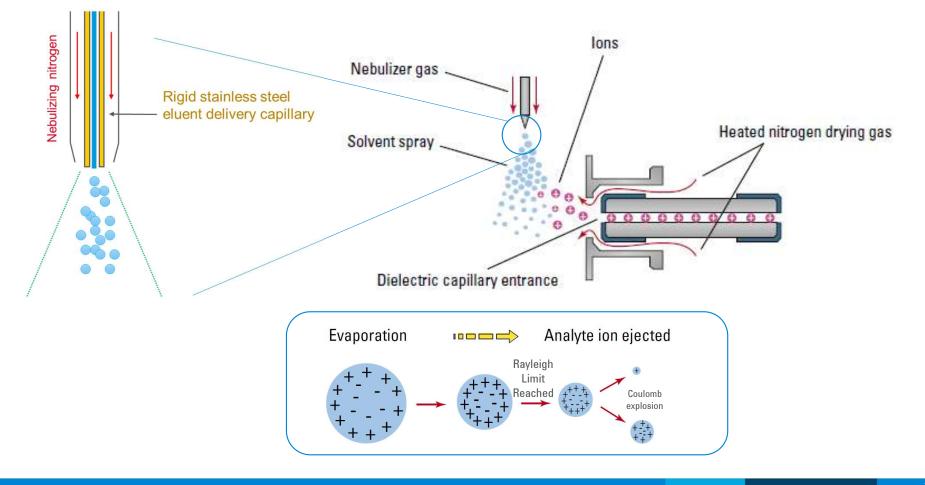
Scientific insights in routine analysis, translational medicine, targeted omics

Performance Improvements

2-3x sensitivity improvements, Enhanced iFunnel speed High precision at low dwell times Production-ready robustness

Basic components of a Mass Spectrometry (MS) system


- (B) ANALYZER: separates sample based on m/z
- (C) DETECTOR: detects ions



Relative Applicability of LC/MS Techniques

- Several different types of ion sources
- Suitable for different classes of compounds
- Atmospheric pressure ionization (API) technique
 - Electrospray ionization (ESI)
 - Atmospheric pressure chemical ionization (APCI)
 - Atmospheric pressure photoionization (APPI)

Electrospray ionization (ESI)

Electrospray Considerations

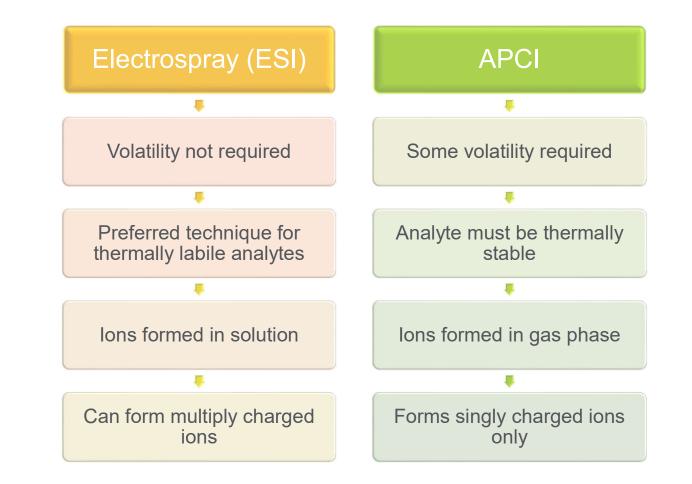
Samples

- lons in solution: catecholamines, sulfate conjugates, quaternary amines
- Compounds that can have a charge induced: menthol
- Compounds containing heteroatoms: carbamates, benzodiazepines
- Multiply charged in solution: proteins, peptides, oligonucleotides

Solution Chemistry Parameters

- Flow rate
- Sample pK, solution pH
- Solution conductivity
- Samples to Avoid
- Extremely non-polar samples: PAHs, PCBs

15 March 2024


Fundamentals of LCMS DE44272.0482986111

🔆 Agilent

APCI Considerations

- Samples
- Compounds of intermediate MW and polarity: PAHs, PCBs, fatty acids, phthalates.
- Compounds that don't contain acidic or basic sites (e.g. hydrocarbons, alcohols, aldehydes, ketones, and esters
- Samples containing heteroatoms: ureas, benzodiazepines, carbamates
- Samples that exhibit a poor electrospray response
- Solution Chemistry Parameters
- Less sensitive to solution chemistry effects than ES
- Tolerates higher flow rates than ES
- Accommodates some solvents not compatible with ES
- Samples to Avoid
- Thermally labile compounds due to vaporization process

Atmospheric Pressure Ionization Techniques

18 March 2021

Fundamentals of LCMS DE44272.0482986111

Available Ion Sources

Extensive ion source portfolio lets you choose the ideal match for your application

Agilent Jet Stream (AJS)

With the aid of superheated N_2 sheath gas for ultra-high sensitivity. Drastically increase ion formation by enhanced droplet desolvation.

Electrospray Ionization (ESI)

Analyze the broadest array of molecules in a concentration dependent manner. Suitable for standard flow, capillary flow, and nanoflow regimes

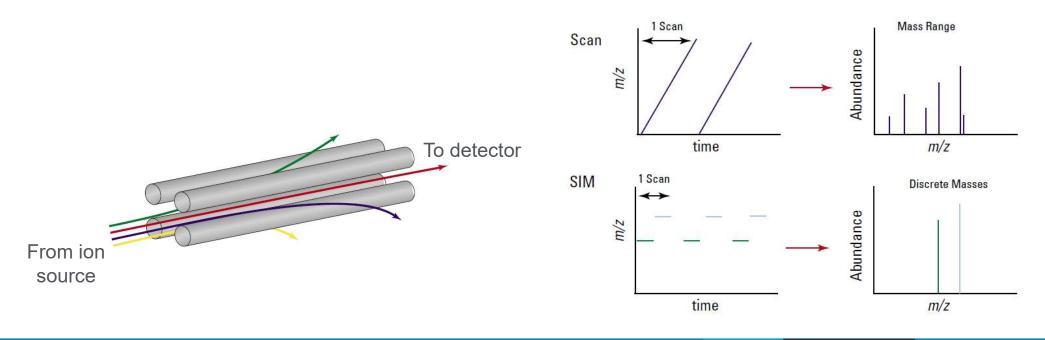
Nano Electrospray (Nano ESI)

Analyze the broadest array of molecules in a concentration dependent manner. Suitable for standard flow, capillary flow, and nanoflow regimes

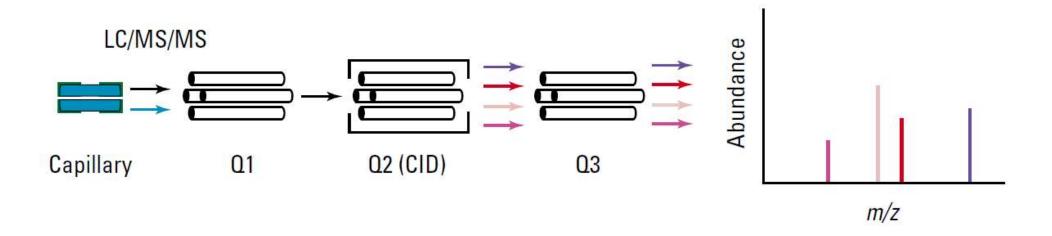
Atmospheric Pressure Chemical Ionization

Atmospheric Pressure Chemical Ionization (APCI)

Complement your standard Electrospray Ionization analysis. You can detect difficult to ionize polar and nonpolar analytes with APCI

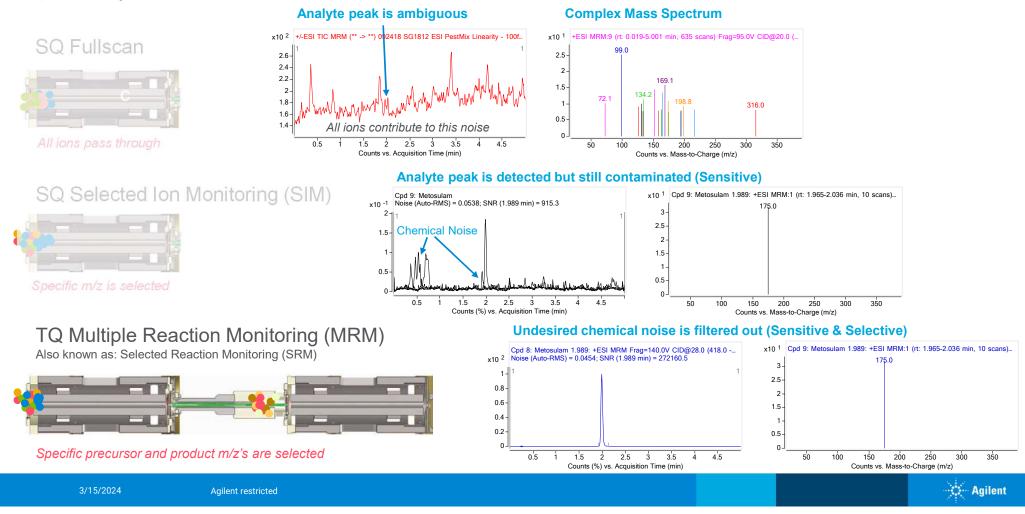

Multimode Ionization (MMI)

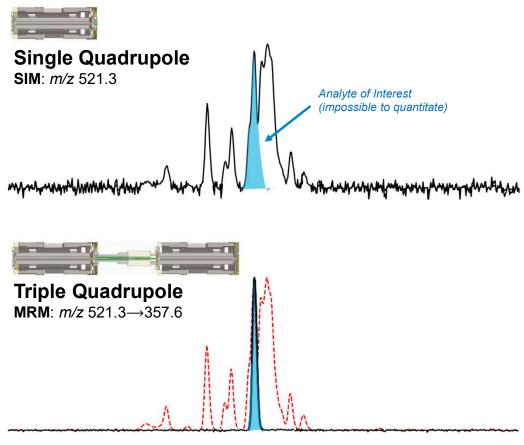
Deliver simultaneous ESI and APCI with high ionization efficiency. Provide added coverage across a wider range of analyte properties. Maximize throughput by eliminating the need to run samples twice.


Quadruple mass analyzer

- Scanning (scan) mode : Range of m/z ratios
- Selected ion monitoring (SIM) mode : only a few m/z ratios

🔆 Agilent


Collision-Induced Dissociation and Multiple-Stage MS


- To obtain structural information
- Analyte ion are fragmented by colliding them with neutral molecules
- Voltages are applied to the analyte ion to add energy to the collisions and create more fragmentation

Quadrupole Mass Spectrometry: Quantitative Modes of Operation

Specifically in the context of Quantitation

Why use a Triple Quadrupole LC/MS?

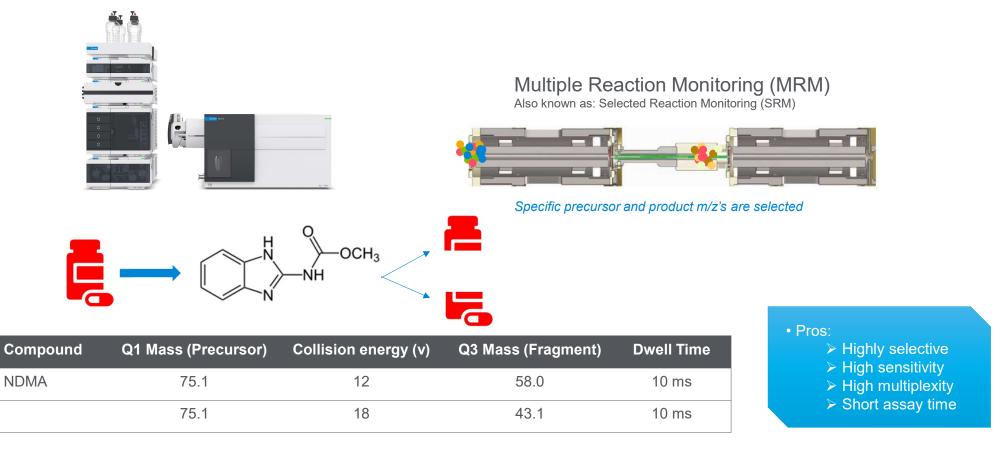
GOLD STANDARD IN QUANTITATIVE CHEMICAL ANALYSIS

Agilent restricted

Single Ion Monitoring (SIM)

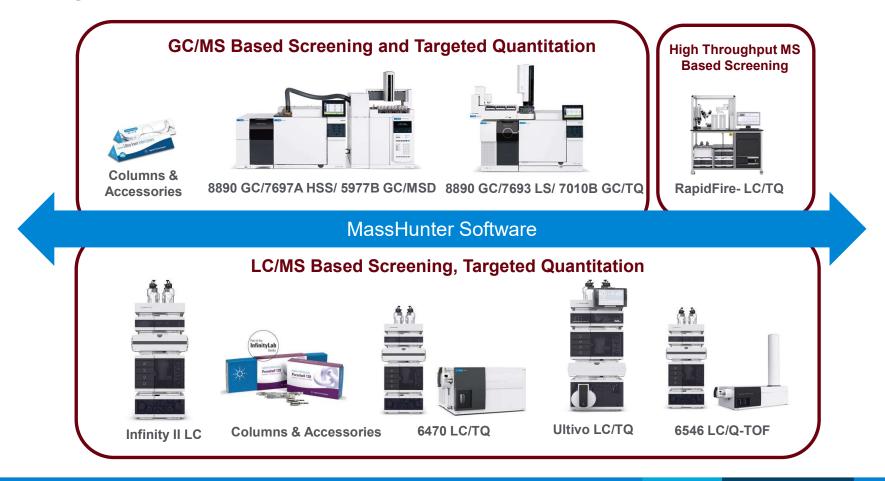
All analytes with specified m/z are detected

- Compound of interest may coelute with other analytes of the same m/z.
- Baseline noise may be much higher due to background ions of the same m/z.


Multiple Reaction Monitoring (MRM)

Only analytes producing a specific "reaction" are detected

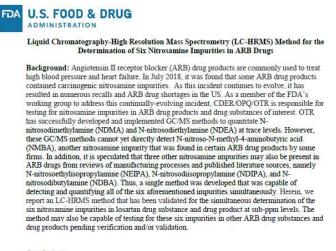
- Uses two stages of filtering. Basically, two SIMs operated at each quadrupole.
- Higher *specificity* of analyte ions.
- Drastic reduction of chemical noise, improving detection limit of analytes.


Targeted screening of compound of interest

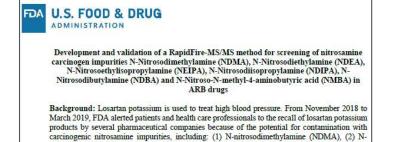
Optimum mass transition and collision energy

Analytical Technologies For Nitrosamine Impurity Analysis In Drug Substances and Drug Products

March 15, 2024


Nitrosamine Analysis in Sartans 6470 LC/TQ

44 March 15, 2024


USFDA on LCMS Based Methods on ARB Drugs

Conclusions:

An LC-HRMS method was developed and validated following ICH Q2(R1) for the detection and quantitation of six nitrosamine impurities in losartan drug substance and drug product, including N-nitrosodimethylamine (NDMA), N-nitrosodiisopropylamine (NDEA), Nnitrosoethylisopropylamine (NEPA), N-nitroso-N-methyl-4-aminobutyric acid (NMBA). The limit of detection (LOD), limit of quantitation (LOQ) and range of the method are summarized below:

	NDMA	NDEA	NEIPA	NDIPA	NDBA	NMBA
LOD (ng/mL)	0.10	0.32	0.05	0.15	0.10	0.20
(ppm)	0.005	0.016	0.003	0.008	0.005	0.010
LOQ (ng/mL) (ppm)	1.0	1.0	1.0	1.0	1.0	1.0
	0.05	0.05	0.05	0.05	0.05	0.05
Range (ng/mL)	1.0 - 100	1.0 - 100	1.0 - 100	1.0 - 100	1.0 - 100	1.0 - 200
(ppm)	0.05 - 5.0	0.05 - 5.0	0.05 - 5.0	0.05 - 5.0	0.05 - 5.0	0.05 - 10.0

carcinogenic nitrosamine impurities, including: (1) N-nitrosodimethylamine (NDMA), (2) Nnitrosodiisopropylamine (NDEA), (3) N-nitrosodibutylamine (NDBA) and (6) N-nitrosomethyl-4-aminobutyric acid (NMBA). These impurities are believed to have been introduced into the finished products through several pathways that include synthesis and manufacturing routes. OTR has developed an advanced analytics robotics-tandem mass spectrometry method (RapidFire-MS/MS) to screen and quantitate the presence of NDMA/NDEA/NEIPA/NDIPA/NDBA/NMBA nitrosamine impurities in other "sartam" drug API and products.

Conclusions: A novel RapidFire-MS/MS method has been developed to simultaneously quantify NDMA, NDEA, NEIPA, NDIPA, NDBA and NMBA in losartan potassium API. The method was fully validated according to the ICH Q2R1 guidance Validation of Analytical Procedures and was determined to be *accurate, precise, specific and linear* over the corresponding analytical ranges. Detailed validation data was documented in technical report FY19-042-DPQR-T. Below is a table summarizing the LOQ and LOD for all six analytes.

	NDMA	NDEA	NEIPA	NDIPA	NDBA	NMBA
Lower Limit of Quantitation (LOQ), ppm	25	50	0.1	0.25	0.1	0.1
Lower Limit of Detection (LOD), ppm	10	25	0.05	0.1	0.05	0.05

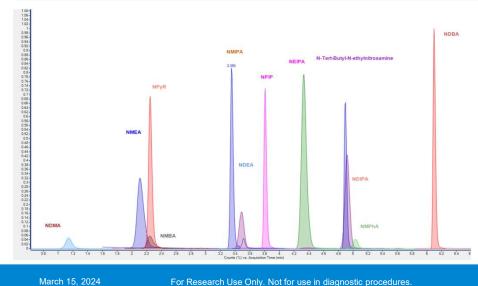
USFDA Guidance Document

FDA U.S. FOOD & DRUG

Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) Method for the Determination of Six Nitrosamine Impurities in ARB Drugs

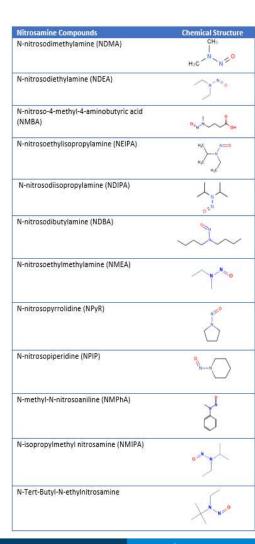
	NDMA	NDEA	NEIPA	NDIPA	NDBA	NMBA
LOD (ng/mL)	0.10	0.32	0.05	0.15	0.10	0.20
(ppm)	0.005	0.016	0.003	0.008	0.005	0.010
LOQ (ng/mL)	1.0	1.0	1.0	1.0	1.0	1.0
(ppm)	0.05	0.05	0.05	0.05	0.05	0.05
Range (ng/mL)	1.0 - 100	1.0 - 100	1.0 - 100	1.0 - 100	1.0 - 100	1.0 - 200
(ppm)	0.05 - 5.0	0.05 - 5.0	0.05 - 5.0	0.05 - 5.0	0.05 - 5.0	0.05 - 10.0

Conversion of ng/mL into ppm


mg/kg=µg/g= **ppm**= [Value in ng/mL]/ [weight of sample in mg] * [Volume of sample diluent in mL]

For example if we get value of **1ng/mL** from calibration curve for a sample size of **20mg/mL** then

 $mg/kg=\mu g/g= ppm= [1ng/mL]/[20mg] * [1mL] = 0.05$


Nitrosamine Analysis Using 6470 LC/TQ

Compound	LOD (ng/mL)	LOD (S/N)	LOQ (ng/mL)	LOQ (S/N)	Linearity Range(ng/mL)
NDMA	0.05	7.40	0.1	17.92	0.075-100
NDEA	0.025	28.4	0.05	33.8	0.05-100
NMBA	0.025	10.58	0.05	30.98	0.025-100
NEIPA	0.025	45.16	0.05	61.23	0.05-100
NDIPA	0.025	8.16	0.05	17.89	0.05-100
NDBA	0.05	266.46	0.1	463.84	0.05-100
NMEA	0.075	7.85	0.1	12.82	0.1-100
NPyR	0.075	21.74	0.1	31.24	0.075-100
NPIP	0.05	23.99	0.1	27.31	0.075-100
NMPhA	0.075	16.51	0.1	27.38	0.1-100
NMIPA	0.05	25.67	0.075	64.09	0.075-100
N-Tert-Butyl-N-ethylnitrosamine	0.05	32.76	0.1	85.99	0.075-100

	-
	5. MI
_	8

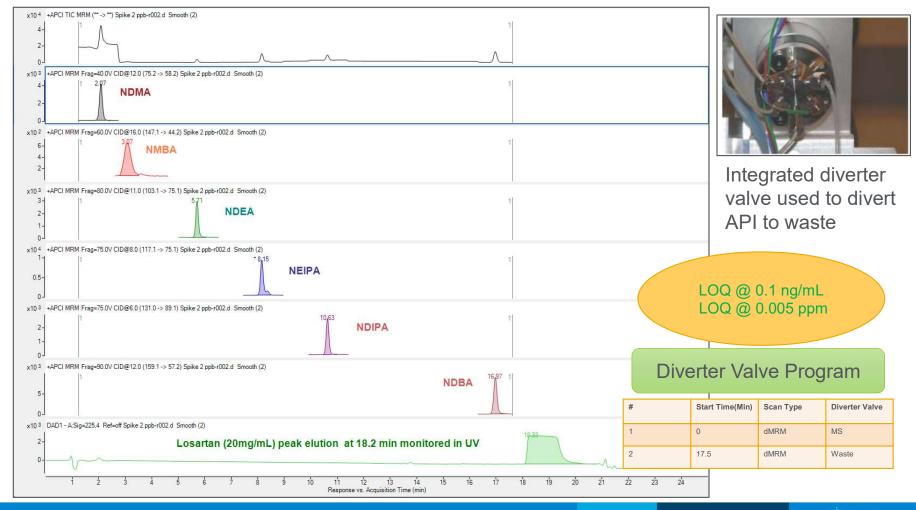
For Research Use Only. Not for use in diagnostic procedures.

🔅 Agilent

Nitrosamine Analysis Using 6470 LC/TQ

Compound	Precursor Ion (m/z)	Product Ion (m/z)	Retention Time(min)	Retention Time Window (Min)	Fragmentor (V)	Collision Energy (V)	CAV (V)	Polarity
NDEA	103.1	75.1	3.484	1.5	80	9	3	+
NDEA	103.1	47.1	3.484	1.5	80	17	3	+
NDMA	75.1	58	1.143	1.24	75	12	3	+
NDMA	75.1	43.1	1.143	1.24	110	18	3	+
NMBA	147.1	44.2	2.247	1.2	60	16	3	+
NMBA	147.1	87.2	2.247	1.2	60	10	3	+
NEIPA	117.1	75.1	4.325	1.0	75	8	3	+
NEIPA	117.1	47.1	4.325	1.0	75	18	8	+
NDIPA	131.1	89.1	4.916	1.0	75	6	3	+
NDIPA	131.1	43.1	4.916	1.0	75	12	8	+
NDBA	159.1	57.2	6.096	1.0	90	12	1	+
NDBA	159.1	41.1	6.096	1.0	90	22	3	+
NMEA	89.1	61.1	2.109	1.37	75	10	3	+
NMEA	89.1	43.1	2.109	1.37	75	12	3	+
NPyR	101.1	55.1	2.248	1.43	90	24	3	+
NPyR	101.1	41	2.248	1.43	90	19	3	+
NPIP	115.1	69.1	3.809	1.0	90	12	3	+
NPIP	115.1	41.2	3.809	1.0	90	24	3	+
NMPhA	137	66.1	5.029	1.32	45	26	3	+
NMPhA	137	107	5.029	1.32	45	12	3	+
NMIPA	103.1	61	3.358	1.0	60	8	7	+
NMIPA	103.1	43	3.358	1.0	60	8	5	+
N-Tert-Butyl-N- ethylnitrosamine	131	75.1	4.897	1.0	40	4	5	+
N-Tert-Butyl-N- ethylnitrosamine	131	57.1	4.897	1.0	40	6	5	+

Triple quadrupole mass spectrometer configuration and parameters


Parameter	Value
Instrument	Agilent Ultivo triple quadrupole mass spectrometer
Ion Source	Atmospheric pressure chemical ionization (APCI)
MS/MS Mode	Dynamic MRM (dMRM)
Ion Mode	Positive
Drying Gas Temperature	300 °C
Drying Gas Flow	6 L/min
Nebulizer Pressure	55 psi
APCI Heater	350 °C
APCI Needle Positive	4 μΑ
Capillary Voltage, Positive	3,000 V
MS1/MS2 Resolution	0.7/0.7 (unit/unit)
Dwell Time	Variable

48 March 15, 2024

Agilent

Nitrosamines in Losartan

49 March 15, 2024

🔅 Agilent

Recovery Study in Losartan drug substance

Nitrosamine Impurity	Concentration (ng/mL)	Recovery %
NMBA	0.4	92
	1	113
	2	115

Nitrosamine Impurity	Concentration (ng/mL)	Recovery %
NDEA	0.4	103
	1	103
	2	101

Nitrosamine Impurity	Concentration (ng/mL)	Recovery %
NEIPA	0.4	100
	1	100
	2	101

Nitrosamine Impurity	Concentration (ng/mL)	Recovery %
NDIPA	0.4	107
	1	98
	2	99

Recovery Study in Losartan

Nitrosamine Impurity	Concentration (ng/mL)	Recovery %
NDMA	2	110

Nitrosamine Impurity	Concentration (ng/mL)	Recovery %
NDBA	2	91

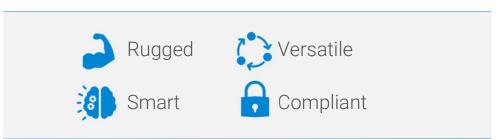
- Excellent Recovery for each nitrosamines
- Recovery study performed at different conc. levels due to presence of NDMA and NDBA in the drug substance

Reproducibility Data

#	Conc. (ng/mL)	NDMA	NMBA	NDEA	NEIPA	NDIPA	NDBA
1	1	2436	4844	9962	34563	13899	16452
2	1	2442	4937	10067	32146	13871	16342
3	1	2435	4827	10066	32805	14375	16942
4	1	2578	4996	10182	32838	13822	16670
5	1	2442	4987	10145	33254	14335	16706
6	1	2434	4966	10193	33108	13868	16691
Average		2461	4926	10103	33119	14028	16634
SD		57.34	73.30	87.92	803.46	254.55	211.18
RSD (%)		2.33	1.49	0.87	2.43	1.81	1.27

Reproducibility Data with Bracketing Standards

#	Conc. (ng/mL)	NDMA	NMBA	NDEA	NEIPA	NDIPA	NDBA
1	1	2556	5484	10530	36010	14023	18686
2	1	2409	5609	10727	36593	13478	18853
3	1	2436	4844	9962	34563	13899	16452
4	1	2442	4937	10067	32146	13871	16342
5	1	2435	4827	10066	32805	14375	16942
6	1	2578	4996	10182	32838	13822	16670
7(Bracketing Std)	1	2442	4987	10145	33254	14335	16706
8(Bracketing Std)	1	2434	4966	10193	33108	13868	16691
Average		2467	5081	10234	33915	13959	17168
SD		63.16	295.66	259.96	1629.64	289.90	1005.59
RSD (%)		2.56	5.82	2.54	4.81	2.08	5.86


53 March 15, 2024

Introducing the 6475 triple quadrupole LC/MS system

The Agilent 6475 triple quadrupole LC/MS system is the next generation of LC/MS instruments – giving you the sensitivity, versatility, robustness, and system intelligence you need to handle any routine analysis or research application.

The 6475 LC/TQ comes equipped with a layer of sophisticated onboard instrument intelligence and smart software workflows to help you maintain uptime, maximize throughput, secures data integrity, and obtain confidence in your results.

6475 triple quadrupole LC/MS pairs well with the 1290 Infinity LC

Complement your analysis with the most reliable LC systems available

"It just never fails." Agilent That's how users perceive the world's top selling LCs from Agilent. Every system is packed with the highest quality parts for highest uptime and longest maintenance Vendor X intervals. Further, sophisticated built-in diagnostic and maintenance tools ensure reliable and secure operation. Reliable instrument performance from start to finish From solvent delivery through sample injection to detection, InfinityLab LCs deliver reliable and robust performance-14% for highest confidence in your daily results Vendor Y and business decisions. Agilent LC instrumentation cited as most reliable Regular LCGC reader surveys since 2011 show Agilent LC instrumentation most frequently cited as most reliable (graph shows data from 2018 survey).

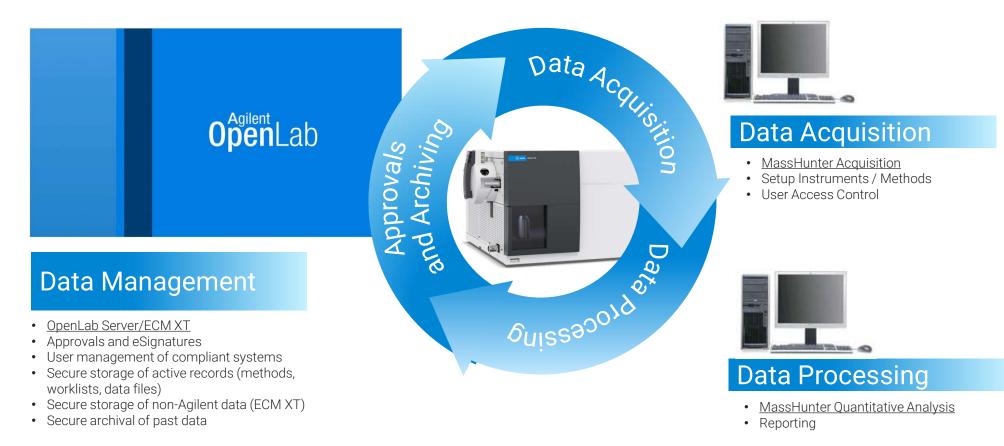
1290 Infinity II Multicolumn Thermostat

Provides precise temperature control over a broad temperature range with cooling to 20 degrees below ambient and heating up to 110 °C. The MCT's column compartment houses up to eight columns.

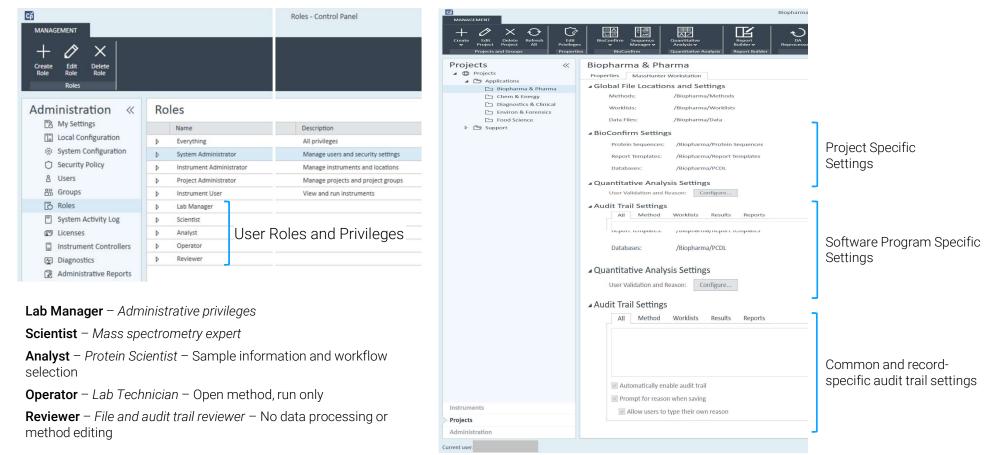
1290 Infinity II Multisampler

Optimized for maximum throughput. The unique dualneedle design enables cycle times to be reduced using overlapped sample runs and injection cycles. Multiwash capability reduces carryover to less than 9 ppm

1290 Infinity II High Speed Pump

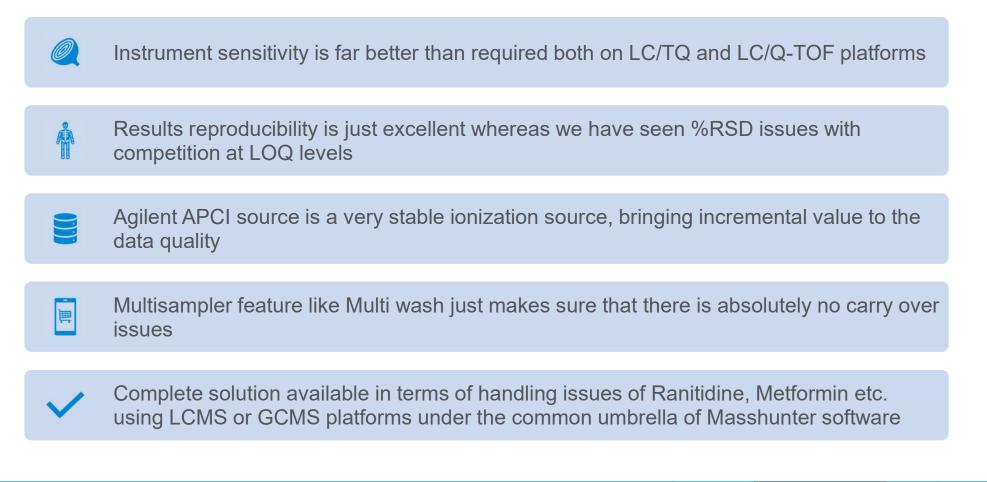

Uses high-pressure mixing for UHPLC gradient formation and solvent blending from up to two solvents at pressures up to 1300 bar and flow rates up to 5 mL/min.

5 March 15,


MassHunter 12 supports technical controls, audit trails, and data integrity

Adheres to compliance guidelines under FDA 21 CFR Part 11, EU Annex 11, and GAMP 5

MassHunter 12 supports technical controls, audit trails, and data integrity


Adheres to compliance guidelines under FDA 21 CFR Part 11, EU Annex 11, and GAMP 5

MassHunter 12 Supports Document Audit Trail Reviews

N	/lethod D	ata Fil	e Worklist	Wor	klist Template	Study		\square		0	• •	
Patł	1: D:\Projects\Josh	nua64	System Activit	y Log								
			▹ Filters	520	in personal di	20000						
		_	Date/Time	•	User	AB				Agilent M	lassHunter Activity Log Viewer – [
om	4/27/2022	15	 2022-04-28 11:10:2 2022-04-28 11:06:4 		SYSTEM (SYSTEM) SYSTEM (SYSTEM)	A				, ignerie in		<u>.</u>
om	4/21/2022	15	b 2022-04-28 11:08:4		SYSTEM (SYSTEM)	H H	ome		-		G	2 •
	Name 🤺	Dat	2022-04-28 11:02:1	20.010.000	SYSTEM (SYSTEM)	^ []ĵ		10				
	ivame 🗤	Ua	b 2022-04-28 11:01:4		SYSTEM (SYSTEM)	A						
	SYSTEM (SYSTEM)	202	> 2022-04-28 11:01:4	1-07:00	SYSTEM (SYSTEM)	A Expo	rt	Refresh All	י			
		2462	2022-04-28 11:01:3	9-07:00	SYSTEM (SYSTEM)	A		1000	15			
	SYSTEM (SYSTEM)	202	▶ 2022-04-28 11:01:1	4-07:00	SYSTEM (SYSTEM)	A System	m Activity L	og Refresl	n			
	CVCTENA (CVCTENA)	202	▶ 2022-04-28 10:56:5	4-07:00	SYSTEM (SYSTEM)	A ⊳ F	ilters					
	SYSTEM (SYSTEM)	202	▶ 2022-04-28 10:56:4	6-07:00	SYSTEM (SYSTEM)	A	m . Am					
	SYSTEM (SYSTEM)	202		4-07:00	SYSTEM (SYSTEM)	A	Date/Time		♥ Us		Description	
			▶ 2022-04-28 10:55:3	2-07:00	SYSTEM (SYSTEM)	A D	2022-04-28	8 10:53:57-07:	00 S1	STEM (SYSTEM)	Acq Audit Trail Viewer: User 'SYSTEM' has logged in.	1953.55
	SYSTEM (SYSTEM)	202	▶ 2022-04-28 10:53:5	7-07:00	SYSTEM (SYSTEM)	A D	2022-04-28	8 10:53:50-07:	00 SY	STEM (SYSTEM)	Acq Console: 'D:\Projects\Joshua6470-PP3\Methods\Linfeng\Drugs_column_opt9_Fine	dPI
				0-07:00	SYSTEM (SYSTEM)	A D	2022-04-28	8 09:51:57-07:	00 SY	STEM (SYSTEM)	Method Optimizer: compound optimization results for Drugs_column_opt9_FindPI_042	271
	SYSTEM (SYSTEM)	202	▶ 2022-04-28 09:51:5		SYSTEM (SYSTEM)	Þ	2022-04-28	8 09:51:54-07:	00 S1	STEM (SYSTEM)	Method Optimizer: All cpds_LW database successfully selected.	
	SYSTEM (SYSTEM)	202	▶ 2022-04-28 09:51:5		SYSTEM (SYSTEM)	N D	2022-04-2	7 20:40:24-07:	00 S1	STEM (SYSTEM)	Acq Console: 'D:\Projects\Joshua6470-PP3\Methods\Linfeng\Drugs_column_opt9_Find	dPl
0	3131 Elvi 13131 Elvi)	202	▶ 2022-04-27 20:40:2		SYSTEM (SYSTEM)	A D	2022-04-2	7 20:40:22-07:	00 51	STEM (SYSTEM)	Acquisition Engine: Method 'D:\Projects\Joshua6470-PP3\Methods\Linfeng\Drugs_colu	um
		_	2022-04-27 20:40:2		SYSTEM (SYSTEM)	N D	2022-04-2	7 20:40:22-07:		STEM (SYSTEM)	Method Optimizer: Completed Guided Compound Optimization for Drugs column opt	
			2022-04-27 20:40:2	2-07:00	SYSTEM (SYSTEM)	M N	1456046-0108		65.4 53			<u> </u>
			« « t <u>2</u>	<u>3 4</u>	<u>5 6 7 8 9</u>	1	139779474947	7 20:40:22-07:	2257A 22	STEM (SYSTEM)	Method Optimizer: Optimization completed successfully.	
						P	2022-04-2	7 20:40:16-07:	00 S1	STEM (SYSTEM)	Acquisition Engine: Column Comp.: G7116B:DEBA408068 - Thermostat off	
								7 20:40:16-07:		STEM (SYSTEM)	Acquisition Engine: Binary Pump: G7120A:DEBBW00177 - Pump standby	

Why Agilent is the right choice for pharma applications?

Learn more!!

80

March 15, 2024

Confidentiality label

Regulator

Regulatory statement (if applicable)