Overcome N-Nitrosamine Analysis Challenges with Chromatography and Mass Spectrometry Techniques

Napaporn Saensila | Field Applications Specialist, SCIEX

napaporn.saensila@sciex.com

- Why is nitrosamine assessment necessary?
- Origin of nitrosamines
- Evaluation of nitrosamines
 - FDA evaluation
 - High-resolution mass spectrometry
 - Nominal mass spectrometry: QTRAP system
 - SCIEX solution

- They are molecules containing a nitroso functional group
- They are of concern because their impurities could be carcinogenic to humans
- Their presence in medicines is considered unacceptable

Why is nitrosamine assessment necessary?

Why is nitrosamine assessment necessary?

- Nitrosamines are chemical compounds that have been determined in animal studies to cause cancer in humans
- US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines require screening limits of 26.5 ng/day or 96 ng/day, depending on the nitrosamine
- In February 2021, European Pharmacopoeia Comission published a new chapter (chapter 2.5.42) that proposes new procedures for the analysis of N-nitrosamines in active substances
- The new chapter focuses on 5 monographs: valsartan, losartan potassium, candesartan cilexetil, irbersartan and olmesartan medoxomil
 - The proposed procedures cover N-nitrosamines: NDMA, NDEA, NDBA, NMBA, NDiPA, NEiPA and NDPA

Figure 1. Structure of a nitrosamine

- In 2018, the presence of nitrosamines (including NDMA) was detected in several blood pressure control drugs known as sartans
- Subsequently, nitrosamines were detected in lots of ranitidine (a drug for the treatment of gastritis and stomach ulcers), and as a result, it was withdrawn from the Mexican market by COFEPRIS, the Mexican ministry of health
- In 2020, the presence of nitrosamines was found in metformin, causing COFEPRIS to add it to the list of drugs that must be tested to rule out the presence of nitrosamines
- New monographs for pharmaceutical requirements were mandate by FEUM, the pharmaceutical standard issues by COFEPRIS

FDA – CONTROL OF NITROSAMINE IMPURITIES IN HUMAN DRUGS

Table 1. AI Limits for NDMA, NDEA, NMBA, NMPA, NIPEA, and NDIPA in Drug Products

Nitrosamine	AI Limit (ng/day) ^{1,2}
NDMA	96
NDEA	26.5
NMBA	96
NMPA	26.5
NIPEA	26.5
NDIPA	26.5

¹ The AI limit is a daily exposure to a compound such as NDMA, NDEA, NMBA, NMPA, NIPEA, or NDIPA that approximates a 1:100,000 cancer risk after 70 years of exposure. Appendix B includes a description of the AI derivation for NDMA, which is an example of how FDA applied ICH M7(R1) to set a limit.

² The conversion of AI limit into ppm varies by product and is calculated based on a drug's maximum daily dose (MDD) as reflected in the drug label (ppm = AI (ng)/MDD (mg)).

These limits are applicable only if a drug product contains a single nitrosamine. If more than one of the nitrosamine impurities identified in Table 1 is detected and the total quantity of nitrosamine impurities exceeds 26.5 ng/day (the AI for the most potent nitrosamines) based on the maximum daily dose (MDD), the manufacturer should contact the Agency for evaluation. For drug products with an MDD of less than 880 mg/day, a recommended limit for total nitrosamines of 0.03 ppm is not more than 26.5 ng/day and is considered acceptable. For drug products with an MDD above 880 mg/day, the limit for total nitrosamines should be adjusted so as not to exceed the recommended limit of 26.5 ng/day

https://www.fda.gov/media/141720/download

Common Name and Chemical Name	Acronym	CAS #	Structure	Chemical Formula	Acceptable Intake Limits (ng/day)
Nitrosodimethylamine; <i>N-</i> Methyl <i>-N-</i> nitrosomethanamine	NDMA	62-75-9	H ₃ C N O CH ₃	C2H6N2O	96
Nitrosodiethylamine; <i>N</i> -Ethyl- <i>N</i> -nitrosoethanamine	NDEA	55-18-5	H ₃ C N N H ₃ C	C ₄ H ₁₀ N ₂ O	26.5
N-nitrosomethylphenylamine	NMPA	614-00-6	NO N. CH3	C ₇ H ₈ N ₂ O	26.5 (USFDA) / 34.5 (EMA)*
Nitrosoisopropyethylamine; <i>N</i> -Ethyl- <i>N</i> -nitroso-2-propanamine	NIPEA	16339- 04-1	H ₃ C N O	C ₅ H ₁₂ N ₂ O	26.5

https://www.gpo.or.th/uploads/file/202106/e9813668f30580eaeaee9dd30654bc02.pdf

Common Name and Chemical Name	Acronym	CAS #	Structure	Chemical Formula	Acceptable Intake Limits (ng/day)
Nitrosodiisopropylamine; N-Isopropyl-N-nitrosoisopropyl- amine	NDIPA	601-77-4	H ₃ C N O H ₃ C CH ₃	C ₆ H ₁₄ N ₂ O	26.5
N-Nitroso-N-methyl-4-aminobu- tyric Acid; 4-[Methyl(nitroso)amino] butanoic acid	NMBA	61445- 55-4	Q _N N OH	C ₅ H ₁₀ N ₂ O ₃	96
Nitrosodibutylamine; <i>N</i> -Butyl- <i>N</i> -nitroso-1-butanamine	NDBA	924-16-3	H ₃ C N O	C ₈ H ₁₈ N ₂ O	26.5
1-methyl-4-nitrosopiperazine	MeNP	16339- 07-4		C ₅ H ₁₁ N ₃ O	26.5

Root cause of Nitrosamine contaminated

- Sodium nitrite (NaNO2)
- Contaminated Solvent or reagents
- Recycled solvents
- Contaminated intermediate
- Manufacturing process
- Storage process

Evaluation of nitrosamines

System Components

Components of MS

LC-MS VS LC-MS/MS

Triple Quadrupole Mass Spectrometer; QQQ

Triple Quadrupole Linear Ion Traps Mass Spectrometer; QTRAP

Quadrupole Time of Flight (QTOF)

Advantages of high-resolution mass spectrometry

- QTOF can distinguish between compounds of similar mass
 - X500R = 30,000 resolution, 300 Da compound, $\Delta m = 0.01$ Da
- QTOF can accurately measure molecular weight to several decimal places
 - 300 Da compound, 5 ppm mass error = 0.0015 Da

High-resolution mass spectrometry can distinguish these pesticides!

Kresoxim-methyl $C_{18}H_{19}NO_4$ Mass = 313.1214 Da

Isazophos $C_9H_{17}CIN_3O_3PS$ Mass = 313.0417 Da

Fragmentation

Example : Reserpine MSMS

Evaluation: FDA

Triple quadruple evaluation

SCIEX Triple Quad 6500+ and QTRAP 6500+ systems

SCIEX 7500 system

High-resolution evaluation

X500 QTOF system

High resolution systems

Search for unknowns

BATCH-BATCH INSPECTION USING LC-HRMS

- Characteristics of the X500 QTOF system
- Reliable, easy to calibrate
- SWATH acquisition
- SCIEX OS software

X500R QTOF system

Chromatogram of metformin analysis

Search for unknowns

BATCH-BATCH INSPECTION USING LC-HRMS

27

The Power of Precision

Search for unknowns using SWATH acquisition

ELECTROSPRAY IONIZATION (ESI)

Index	Component Name	v Expe RT v	Area ⊽	Height ⊽	Retenti _⊽ Time	Precur Mass	Y Ratio o	Area f comparis	son ⊽ マ		
6272	130.1221 / 1.97	1.97	1.679e6	5.851e5	1.97	130.122	1666.100)			
6479	323.1619 / 2.19	2.19	4.929e4	1.740e4	2.19	323.162	146.070				
9617	336.2512 / 3.87	3.87	2.349e5	4.805e4	3.87	336.251	91.827				
7885	456.2013 / 2.96 [M+Na]+	2.96	3.012e5	1.061e5	2.97	456.201	90.882				
9906	282.2792 / 4.80 [M+NH4]+	4.80	6.413e5	2.075e5	4.80	282.279	86.068				
7879	416.2088 / 2.96	2.96	3.588e5	1.244e5	2.97	416.209	69.522				
9489	419.2271 / 3.64	3.64	5.066e5	1.790e5	3.57	419.227	52.319				
7884	434.2185 / 2.96 [M+H]+	2.96	1.582e6	5.473e5	2.97	434.218	49.198				
9378	308.2206 / 3.42	3.42	4.191e4	9.304e3	3.42	308.221	49.155				
9495	291.1492 / 3.65	3.65	1.248e7	1.138e6	3.18	291.149	46.702			0.45.457	10.050
6057	711.3074 / 1.80	8219		/ 3.03 [2M		3.03	1.660e4	4.242e3	3.10	345.157	12.050
9792	733.4978 / 4.43	5268		/ 1.18 [M+	H]+	1.18	4.623e4	1.209e4	1.18	457.230	11.979
9841	734.5054 / 4.63	6110	683.3115			1.83	5.807e5	3.851e4	1.84	683.311	11.730
9840	716.4942 / 4.63	9754	298.2741			4.14	2.937e4	6.957e3	4.13	298.274	11.656
9774	733.5007 / 4.32	6049		/ 1.80 [M+		1.80	1.067e5	2.139e4	1.81	662.325	11.599
5629	427.2185 / 1.51 [M+H]+	9120		/ 3.12 [M+	H]+	3.12	1.798e4	6.098e3	3.10	277.216	11.592
9836	713.4772 / 4.60	5552	552.2353			1.47	2.808e4	4.249e3	1.46	552.235	11.527
9837	731.4863 / 4.60	8474		/ 2.96 [M+		2.96	1.627e5	5.795e4	2.97	207.092	11.518
6242	675.3559 / 1.93	8482			CH3OH+H]+		3.514e4	4.059e3	3.06	313.129	11.505
5887	544.2970 / 1.71	5844	713.3217	/ 1.67		1.67	3.649e5	2.259e4	1.63	713.322	11.442
8646		5302	102.0909	/ 1.21		1.21	5.094e4	1.781e4	1.21	102.091	11.322
	185.0808 / 3.06 [M+H]+	8909	199.0976	/ 3.12 [M+	CH3OH+H]+	3.12	1.880e5	4.317e4	3.09	199.098	11.296
5957	714.3238 / 1.74	9206		/ 3.25 [M+		3.25	3.616e7	7.820e6	3.18	418.225	11.281
6173	727.3375 / 1.86	6497	530.2816	/ 2.20 [M+	NH4]+	2.20	5.393e4	1.345e4	2.21	530.282	11.256
6076	676.3737 / 1.82	5357	207.0920	/ 1.28		1.28	3.402e4	1.231e4	1.29	207.092	11.228
6350	720.3670 / 2.05 [M]+	5987	458.2606	/ 1.77 [M+	NH4]+	1.77	1.452e5	4.560e4	1.78	458.261	11.083
		5787	639.2845	/ 1.62 [M+	Na]+	1.62	2.959e4	1.054e4	1.62	639.284	11.006
		5628	444.2451	/ 1.50 [M+	NH4]+	1.50	1.753e5	5.929e4	1.50	444.245	10.966
		5684	249.1336	/ 1.53 [M+	CH3OH+H]+	1.53	2.593e4	4.159e3	1.53	249.134	10.825
		5983	187.0963	/ 1.77 [M+	H]+	1.77	1.925e4	6.205e3	1.78	187.096	10.818
		8895	113.0595	/ 3.09 [M+	CH3OH+H]+	3.09	1.996e4	5.008e3	3.09	113.059	10.759
		5804	661.3399	/ 1.64		1.64	7.519e4	8.005e3	1.63	661.340	10.727
		5861	109.1010	/ 1.70		1.70	1.793e4	5.676e3	1.70	109.101	10.698

ChemSpider and auto-fragmentation tool in SCIEX OS software 1.7

Compound identification by standard addition

QTRAP system

QTRAP 6500+ SYSTEM

Compound Name	CAS Number	Molecular Formula
N-Nitrosodimethylamine (NDMA)	62-75-9	C ₂ H6N ₂ O
N-Nitrosodibutylamine (NDBA)	924-16-3	C8H18N ₂ O
N-Nitrosodi-n-propylamine (NDIPA)	621-64-7	C6H14N ₂ O
N-Nitrosomethylethylamine (NMEA)	10595-95-6	C3H8N ₂ O
N-Nitrosodiethylamine (NDEA)	55-18-5	C4H10N ₂ O
1-Nitrosopyrrolidine (NPYR)	930-55-2	C4H8N ₂ O
1-Nitrosopiperidine (NPIP)	100-75-4	$C_5H_{10}N_2O$
4-Nitrosomorpholine (NMOR)	59-89-2	$C_4H_8N_2O_2$

Positive XIC and HPLC separation

Calibration and accuracy

- All calibration curves for both quantifier and qualifier transition have an r value >0.99
- Accuracies at each level of the calibration curve for all analytes between 70% and 130%
- Calibration curve range between 10 pg/mL and 5,000 pg/mL (50-5,000) pg/mL for NMEA and NPYR)

Calibration for NDMA 1: y = $1.56540e6 x + 251.28403 (r = 0.99664, r^2 = 0.99329)$ (weighting: 1 / x)

Note: calibration curve concentration in ng/mL

The Power of Precision

LOD and LOQ results

- A limit of quantification (LOQ) of 10.00 pg/mL of 2.50 pg/mL achieved for the majority of compounds
- 2 compounds have a slightly raised LOQ and LOD of 50.00 pg/mL and 10.00 pg/mL respectively
- &CV achieved for all compounds (6 injections) at both LOQ and 10x LOQ is well within acceptable limits or trace analysis.

Compound Name	LOQ (pg/mL)	LOD (pg/mL)	%CV at LOQ	%CV at 10x LOQ
N-Nitrosodimethylamine (NDMA)	10.00	2.50	4.61	3.23
N-Nitrosodibutylamine (NDBA)	10.00	2.50	3.06	1.29
N-Nitrosodi-n-propylamine (NDIPA)	10.00	2.50	2.60	2.04
N-Nitrosomethylethylamine (NMEA)	50.00	10.00	3.24	1.31
N-Nitrosodiethylamine (NDEA)	10.00	2.50	5.19	1.69
1-Nitrosopyrrolidine (NPYR)	50.00	10.00	2.43	0.63
1-Nitrosopiperidine (NPIP)	10.00	2.50	2.20	0.95
4-Nitrosomorpholine (NMOR)	10.00	2.50	4.68	2.03

Chromatography for nitrosamine analysis in sartan family

NITROSAMINES IN LOSARTAN

• MRM signals for 6 nitrosamines

		g/mL or 0.01 ppm osartan	Threshold: 1.2 ng/mL or 0.03 ppm Losartan			
Analyte	%CV	Avg Accuracy	%CV	Avg Accuracy		
NDMA	9.21	89.36	4.15	81.81		
NMBA	8.36	79.77	4.47	78.01		
NDEA	2.83	98.72	4.10	90.85		
NEIPA	3.00	94.46	4.31	82.93		
NDIPA	2.19	88.64	4.54	77.22		
NDBA	4.83	111.01	2.54	98.38		

Representative calibration curves

NITROSAMINES IN LOSARTAN

- Calibration curves ranging from 0.2 ng/mL to 153.6 ng/mL for all nitrosamines evaluated correspond to 0.005 - 3.8 µg/g with respect to losartan
- In all cases, linearity is demonstrated with an r value >0.99

Chromatography for nitrosamine analysis in sartan family

NITROSAMINES IN VALSARTAN

- MRM signals for 6 nitrosamines
- All the compounds showed correlation values r >0.99
- Recovery in the matrix was also evaluated at the LOD at the LOQ and at the daily exposure limit specified by the FDA (0.03 ppm in the API)

The Power of Precision

Chromatogram for ranitidine analysis

NDMA IN RANITIDINE

• MRM signals for NDMA - 2 transitions are monitored

Sample	Concentration in 50 mg/mL Ranitidine	Avg. Accuracy %	Precision %RSD	Recovery %
LOD (0.01ppm)	0.5 ng/mL	101%	1.5	80-120
LLOQ (0.03ppm)	1.5 ng/mL	102.8	2.5	80-120
Spec Level (0.09ppm)	4.5 ng/mL	104.1	1.4	80-120

Enhanced product ion scan SEARCH IN LIBRARIES USING THE QTRAP SYSTEM

(Parties 198)

© 2021 DH Tech. Dev. Pte. Ltd.

QTRAP system technology

WHAT IS A QTRAP SYSTEM?

- In a QTRAP system, a linear ion trap (LIT) is added to the Q3 of a typical triple quadruple instrument
- This allows for a multitude of additional workflows beyond basic MRM applications for better specificity and quantitative performance

Scan Type	Triple Quad	QTRAP
Precursor	•	•
MRM	•	•
Neutral Loss	•	•
Product Ion	•	•
Enhanced MS (EMS)		•
Enhanced Multiply Charged (EMC)		•
Enhanced Resolution		•
Enhanced Product Ion		•
MS ³ (MS/MS/MS) and MRM ³		•

What is an enhanced product ion scan?

FAST AND SENSITIVE MS/MS SCAN

- Precursor ions are filtered in Q1
- The ions are then fragmented in the LINAC collision cell
- Trapping is performed in Q3 (fixed or dynamic fill time)
- Trapped ions are scanned to give a full MS/MS spectra
- This scan can be performed alongside typical MRM analysis to provide a further level of confirmation to your analysis
- If a library of target compounds is present, this can be used to provide a library match and hit score, which provides further confidence in the specificity of the analysis without having to perform multiple injections

Enhanced product ion scan QTRAP system

Library entry example: NDBA

The Power of Precision

Library search functionality: NDBA

- By using a nitrosamine library, we can perform confirmation to ensure the specificity of our analyte.
- In this case, NDBA has been identified with a purity of 94.6% based on library spectra
- Therefore, this provides confidence in the assignment of the analyzed peak and can exclude any artifact peaks that may occur

Achieved LOD, LOQ and linearity

	Methanol Diluent	Impurity	NDMA	NDEA	NEIPA	NDIPA	NDPA	NMPA	NDBA	NMBA	NMO ^{\$}
	USFDA Method Limits ^{##}	LOD (ppm)	0.005	0.002	0.003	0.001	0.001	0.002	0.001	0.002	NAV
		LOQ (ppm)	0.01	0.02	0.02	0.02	0.005	0.005	0.005	0.005	NAV
		Linearity (ppm)	0.01 - 0.1	0.02 - 0.1	0.02 - 0.1	0.02 - 0.1	0.005 - 0.1	0.005 - 0.1	0.005 - 0.1	0.005 - 0.1	NAV
				-							
	Methanol Diluent	Impurity	NDMA	NDEA	NEIPA	NDIPA	NDPA	NMPA	NDBA	NMBA	NMO ^{\$}
API Load ~100 mg	Limits Achieved on	LOD (ppm)	0.005	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	QTRAP [®] 5500+	LOQ (ppm)	0.01	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	System	Linearity (ppm)	0.01 - 2	0.005 - 2	0.005 - 2	0.005 - 2	0.005 - 2	0.005 - 2	0.005 - 2	0.005 - 2	0.005 - 2
	Methanol Diluent	Impurity	NDMA	NDEA	NEIPA	NDIPA	NDPA	NMPA	NDBA	NMBA	NMO ^{\$}
	Limits Achieved on	LOD (ppm)	0.005	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.005
	X500B System	LOQ (ppm)	0.01	0.01	0.01	0.01	0.005	0.01	0.005	0.005	0.01
		Linearity (ppm)	0.01 - 1	0.01 – 1	0.01 – 1	0.01 - 1	0.005 - 1	0.01 - 1	0.005 – 0.5	0.005 - 1	0.01 - 1

	Water/Acidified Water	Impurity	NDMA	NDEA	NEIPA	NDIPA	NDPA	NMPA	NDBA	NMBA	NMO ^{\$}	
	API Load ~25 mg	Limits Achieved on X500B System	LOD (ppm)	0.005	0.002	0.002	0.002	0.002	0.005	0.002	0.002	0.005
			LOQ (ppm)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
			Linearity (ppm)	0.01 - 2	0.01 – 2	0.01 – 2	0.01 – 2	0.01 – 2	0.01 – 2	0.01 – 2	0.01 – 2	0.01 - 2

Conclusions

QTRAP AND HRMS LC-MS/MS SYSTEMS

- Any of our systems has the necessary sensitivity to determine the values requested by regulatory authorities
- Extensive sample preparation is not required
- Selective, sensitive and reproducible methods for the detection and quantification of various APIs are presented and can be transferred to your laboratory immediately
- HRMS systems will help enable timely detection of nitrosamines and their precursors
- QTRAP systems allow additional contaminations to be explored by searching libraries, and aid matrix effect elimination MRM³

Tech notes

For Research Use Only. Not for Use In Diagnostic Procedures

Drug Discovery and Development

For Research Use Only. Not for Use In Diagnostic Procedure

Drug Discovery and Development

Método Altamente Selectivo y Sensible para la Cuantificación de Nitrosaminas en Sustancias Farmacológicas en Valsartán

Cuantificación con el sistema SCIEX Triple Quad™ 5500+ LC-MS/MS - QTRAP® Ready acoplado al sistema ExionLC[™] AD

Aman Sharma¹, Sandeep Choudhary¹, M Chandrasekar¹, Manoj Pillai¹ SCIEX. India

Valsartán v otros medicamentos relacionados a la familia "sartán" se usan para tratar pacientes con hipertensión (presión arterial alta) y aquellos con insuficiencia cardíaca o que han sufrido un ataque cardíaco. El mecanismo de acción de los "sartanes" es bloquear la acción de la Angiotensina-II, una hormona que contrae los vasos sanguíneos y hace que aumente la presión arterial

En julio de 2018, la US FDA emitió un aviso de retiro del mercado para una gran cantidad de medicamento genérico usado para el bloqueo del receptor de Angiotensina-II. Valsartán, fabricado en instalaciones de China, debido a la niveles inaceptables de contaminación por el compuesto genotóxico n-nitrosodimetilamina (NDMA). En los siguientes años, se han emitido cientos de retiros

Drug Discovery and Development

For Research Use Only. Not for Use in Diagnostic Procedures

Analysis of Genotoxic Nitrosamines in Losartan and **Ranitidine Active Pharmaceutical Ingredients**

On the SCIEX QTRAP[®] 4500 LC-MS/MS System with ExionLC[™] AD System

Sandeep Choudhary, Aman Sharma, M Chandrasekar, Manoj Pillai SCIEX, India

In recent years, there have been several high profile drug recalls of angiotensin II receptor blocking saratan class drug (valsartan, losartan, irbesartan), due to contamination of the final drug products with potentially genotoxic nitrosamine compounds, including n-nitrosodimethylamine (NDMA). More recently in September of 2019, the US FDA announced the discovery of low levels of NDMA in the H2 blocker ranitidine, generic for Zantac, which is sold as an over-the-counter medication used to treat heartburn and GERD. This resulted in the recall by some manufacturers of this product, and the recommendation of some regulating agencies (Health Canada) that all products containing this medication be recalled. Drug product contamination and subsequent recalls pose obvious health risks to consumers, and

26.5 ng/day for n-nitrosodiethylamine (NDEA) to 96 ng/day for NDMA. Because the daily dosage of a drug can vary, an

Analysis of nitrosamine impurities in a metformin drug substance and drug product

Using the SCIEX X500 QTOF System

Sandeep Choudhary¹, Rajendra Prasad Thatipamula¹, Jack Steed², Pankaj Partani¹, Jianru Stahl-Zeng³, Manoj ¹SCIEX CoE, India; ²SCIEX, UK, ³SCIEX, Germany

Metformin, a biguanide developed from galegine, is an oral antihyperglycemic agent most widely used in the treatment of type 2 diabetes. Chemically, it is a hydrophilic base which exists at physiological pH as the cationic species (>99.9%). It is freely soluble in water and is practically insoluble in acetone, ether, and chloroform. The pKa of metformin is 12.4, with the pH of a 1% aqueous solution of metformin hydrochloride is 6.68. The tablets are available under various brand names for oral administration containing 500 mg, 750 mg or 1000 mg of metformin hydrochloride.

Nitrosamines, the chemical compounds containing nitroso functional group, are classified by the ICH M7(R1) Guideline as class one impurities, "known mutagenic carcinogens", based on both rodent carcinogenicity and mutagenicity data. They are categorized by the International Agency for Cancer Research as

Additionally, the FDA has provided "guidance for industry" regarding "control of nitrosamine impurities in human drugs".4

The Power of Precision

Thank you!

Questions?

The SCIEX clinical diagnostic portfolio is For In Vitro Diagnostic Use. Rx Only. Product(s) not available in all countries. For information on availability, please contact your local sales representative or refer to <u>www.sciex.com/diagnostics</u>. All other products are For Research Use Only. Not for use in Diagnostic Procedures.

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd. or their respective owners in the United States and/or certain other countries (see <u>www.sciex.com/trademarks</u>).

© 2021 DH Tech. Dev. Pte. Ltd. RUO-MKT-11-11889-A

