กระบวนการผลิตผลิตภัณฑ์ยืนบำบัดชนิด CAR-T cells ความรู้พื้นฐานผลิตภัณฑ์ทางการแพทย์ขั้นสูง ชนิดยีนบำบัด สำนักยาและวัตถุเสพติด กรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข #### Natapol Pornputtapong, PhD 2024-05-24 Department of Biochemistry and Microbiology Faculty of Pharmaceutical Sciences Chulalongkorn University #### Table of contents - 1. CAR-T cell - 2. Starting material - 3. Vector Production - 4. CAR-T Production # CAR-T cell ### Chimeric Antigen Receptor #### CAR-T cell timeline #### CAR-T cell generation #### CAR-T cell in action ### CAR-T approved product | Company
name
Brand name
Generic
name | Date of
approval | Target antigen/
Antibody | Hinge/
transmembrane | Costimulatory
domains | Vector/
promoter | Targeted
cancers | Pivotal trial | No. of
Patients | Outcomes | References | |--|---------------------|---|-------------------------|--------------------------|------------------------|---------------------|-----------------------------------|--------------------|-------------------------------|------------| | Novartis
Kymriah
Tisagenlecleucel | Aug 30, 2017 | CD19
Mouse FMC63 | CD8α/CD8α | 4-1BB + CD3ζ | Lentiviral
EF1α | R/R CAYA B-
ALL | ELIANA
(NCT02228096) | 75 | 81% overall
remission rate | (58) | | Kite
Yescarta
Axicabtagene
ciloleucel | Oct 18, 2017 | CD19
Mouse FMC63 | CD8α/CD8α | CD28 + CD3ζ | Gammaretroviral
LTR | R/R LBCL | ZUMA-1
(NCT02348216) | 108 | 58% complete
response | (59) | | Kite
Tecartus
Brexucabtagene
autoleucel | Jul 24,
2020 | CD19
Mouse FMC63 | CD28/CD28 | CD28 + CD3ζ | Gammaretroviral
LTR | R/R MCL | ZUMA-2
(NCT02601313) | 68 | 67% complete
response | (61) | | Juno
Breyanzi
Lisocabtagene
maraleucel | Feb 5,
2021 | CD19
Mouse FMC63 | IgG4/CD28 | 4-1BB+ CD3ζ | Lentiviral
EF1α | R/R LBCL | Transcend NHL001
(NCT02631044) | 269 | 53% complete
response | (60) | | Bluebird
Abecma
Idecabtagene
vicleucel | Mar 26, 2021 | BCMA
Mouse BB2121 | CD8α/CD8α | 4-1BB+ CD3ζ | Lentiviral
MND | R/R MM | KarMMa
(NCT03361748) | 128 | 33% complete
response | (63) | | J&J and Legend
Carvykti
Ciltacabtagene
autoleucel | Feb 28, 2022 | BCMA
dual camel single-
domain antibodies | CD8α/CD8α | 4-1BB + CD3ζ | Lentiviral
EF1α | R/R MM | CARTITUDE-1
(NCT03548207) | 97 | 82.5% complete
response | (64) | R/R, relapsed or refractory. CAYA, children and young adults. LBCL, large B-cell lymphoma. MCL, mantle cell lymphoma. MM, multiple myeloma. #### Future of CAR #### Future of CAR #### CAR-T cell therapy process ### Typical manufacturing process C>P # Starting material ### Starting material - Cell - Gene editing vector - Cell culture media - etc. #### Starting material qualification - Safety testing: - sterility, mycoplasma, adventitious agents - other relevant human pathogens not included in donor testing - Established acceptance criteria - e.g., minimum cell number, % CD3+, viability; - Additional characterization studies such as phenotypic analysis - e.g., % of CD4+ and CD8+ cells, % NK cells, % monocytes, % B cells Characterization and Qualification of Cell Substrates and Other Biological Materials Used in the Production of Viral Vaccines for Infectious Disease Indications #### Adventitious agents Adventitious agents are considered to be - viruses - bacteria, mycoplasma/spiroplasma, mycobacteria, rickettsia - fungi - protozoa - parasites - transmissible spongiform encephalopathy (TSE) agents ### Apheresis #### Blood composition Adapted from "Principles of Blood Separation and Apheresis Instrumentation"³ #### Cell collection techniques Source: Terumo Blood and Cell Technologies ### Donor screening and testing Donors are defined as individuals as sources for HCT/Ps intended for implantation, transplantation, infusion, or transfer into a human recipient donor testing and donor screening are meant to address the following three areas: • Limiting the risk of transmission of communicable disease from donors to recipients; ### Donor screening and testing - Establishing manufacturing practices that minimize the risk of contamination; - Requiring an appropriate demonstration of safety and effectiveness for cells and tissues that present greater risks due to their processing or use. #### Donor screening According to 21 CFR, Parts 1270 and 1271, all donors of cells and tissue must be screened for: - Risk factors for, and clinical evidence of, Relevant Communicable Diseases and Disease Agents (RCDAD), including: - Human immunodeficiency virus (HIV), types 1 and 2 - Hepatitis B virus (HBV) - Hepatitis C virus (HCV) #### Donor screening - Human transmissible spongiform encephalopathy (TSE), including Creutzfeldt-Jakob disease (CJD) - Treponema pallidum (syphilis) - Communicable disease risks associated with xenotransplantation ### Donor testing According to 21 CFR 1271.80(b), general requirements for donor testing are as follows: - Testing must be done for relevant communicable diseases - donor specimens must be collected for testing at the time of recovery of cells or tissue from the donor or up to 7 days before or after recovery. - Appropriate FDA-licensed, approved, or cleared donor screening tests, in accordance with the manufacturer's instructions, must be conducted ### **Ancillary Materials** come into contact with the cellular therapeutic product, however are not intended to be in the final product - Monoclonal antibodies: used in cell selection/depletion - Cytokines, growth factors, and other supplements: used to regulate/activate/differentiate cells in culture - Antibiotics, serum culture media, and enzymes: used to passage cells ### **Vector Production** #### Lentivirus - efficiently introduce genetic material into a broad range of dividing and non-dividing cells, low immunogenicity - Potential Risks - Insertional Mutagenesis - Immunogenicity - Limited Control of Expression - Off-Target Effects - Risk of Vector Mobilization #### Lentivirus vector Adapted from: Brown J. Supporting AAV and lentiviral vector development and commercialization. Pharma's Almanac. May 24, 2019. https://www.pharmasalmanac.com/articles/supporting-aav-and-lentiviral-vector-development-and-commercialization¹⁵ #### Vecter transfection ### General upstream processing for LV production ## inducible and stable cell lines for LV production | Cell line | LV
generation | Induction system | Envelope | Reported titer | Adherent or
Suspension | Reference | |---------------------|------------------|-------------------|---------------------------------|-----------------------------------|---------------------------|--------------------------------| | GPRG-TL20-
IL2RG | 3 rd | Tet-off | VSV-G | 5x10 ⁷ TU/mL | Adherent | Throm 2009 ³⁵ | | 293SF-PacLV | 3 rd | Tet-on,
Cumate | VSV-G | 3.4x10 ⁷ TU/mL/
day | Suspension | Broussau
2008 ³⁶ | | 293TsaGLOBE | 3 rd | Tet-on | VSV-G | 1.4x10 ⁷ TU/mL | Suspension | Chen 2020 ³⁷ | | LentiPro26 | 3 rd | NA | MLV
Amphotrophic
Envelope | 10 ⁶ TU/mL/day | Adherent | Tomas 2018 ³¹ | | WinPac | 3 rd | NA | RD114-PR | 1x10 ⁶ TU/mL | Adherent | Sanber 2015 ³⁴ | ### General downstream processing for LV for ex vivo #### Options for upstream and downstream processing of LVs #### CQAs for LV in the development of CAR T-cell ### Release testing for key LV attributes | Identity | Transgene presence | PCR, ddPCR, NGS,
Sanger Sequencing | 21 CFR 610.14 ⁷³ | |----------|---|---|---| | | Envelope | SDS-PAGE, MS,
immunoblotting,
ELISA | 21 CFR 610.14 ⁷³ | | | Adventitious virus
(human, bovine, and
porcine if animal-derived
materials used) | in vivo and in vitro
assays | ICH Q5A (R1) ²⁴ 9 CFR 113.53 ⁷⁴ 9 CFR 113.46 ⁷⁵ 9 CFR 113.47 ⁷⁶ | | | Replication-competent LV | qPCR, PERT,
cytopathology | Testing of Retroviral Vector-Based Human Gene Therapy Products for Replication Competent Retrovirus During Product Manufacture and Patient Follow-up. FDA Guidance for Industry, January 2020 ⁷⁷ | | Safety | Mycoplasma | PCR, RT-PCR, cell
culture-based
assays | USP <63> ⁷⁸ | | | Sterility | Culture-based assays | USP <71> ⁷⁹ | | | Endotoxin | LAL method: gel-
clot, chromogenic,
and turbidimetric | USP <85>80 | | General | рН | pH meter
(potentiometry) | USP <791>81 | | | Osmolality | Osmometer | USP <785>82 | | | Appearance (color and clarity) | Visual | USP <631>83 | # Release testing for key LV attributes (cont) | Purity | Residual plasmid | qPCR | Guidelines on the quality, safety, and efficacy of biotherapeutic protein products prepared by recombinant DNA technology: Replacement of Annex 3 of WHO Technical Report Series, No. 814. (2013) ⁸⁴ | | | |--------|---|--|---|--|--| | | Residual host cell DNA,
total DNA | qPCR, Picogreen,
DNA Threshold
assay | Guidelines on the quality, safety, and efficacy of biotherapeutic protein products prepared by recombinant DNA technology: Replacement of Annex 3 of WHO Technical Report Series, No. 814. (2013) ⁸⁴ USP <509> ⁸⁵ | | | | | Host cell protein | ELISA, MS | USP <1132>86 | | | | | Residual serum/
nuclease/
transfection reagent/
solvent | ELISA, MS,
chromatography | Serum: 21 CFR 610.15(b) ⁸⁷ Nuclease: ICH M7(R1) ⁸⁸ Transfection reagents: ICH M7(R1) ⁸⁸ Solvent: USP <467> ⁸⁹ | | | | | Product-related impurities: Interfering particles, non-infectious particles | ELISA, MS | Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs). FDA Guidance for Industry, January 2020 ¹⁷ | | | | | Visible particulates | Visual inspection** | USP <788>90
USP <790>91
USP <1790>92 | | | # Release testing for key LV attributes (cont) | | Physical/genomes titer | ELISA (p24), qPCR,
RT-PCR, HPLC | Chemistry, Manufacturing, and
Control (CMC) Information for
Human Gene Therapy Investigational
New Drug Applications (INDs). FDA Guidance for
Industry, January 2020 ¹⁷ | |----------------------|--|--|--| | Strength/
potency | Infectious/functional titer | Transduction of cells followed by quantification of the pro-viral DNA copy number by qPCR or by immunofluorescence with flow cytometry | Chemistry, Manufacturing, and
Control (CMC) Information for
Human Gene Therapy Investigational
New Drug Applications (INDs). FDA Guidance for
Industry, January 2020 ¹⁷ | | | Physical titer: infectious titer ratio | Calculation | Chemistry, Manufacturing, and
Control (CMC) Information for
Human Gene Therapy Investigational
New Drug Applications (INDs). FDA Guidance for
Industry, January 2020 ¹⁷ | | | Functional/biological potency (transduced primary cells) | Cell proliferation, cytotoxicity, cytokines | Potency Tests for Cellular and Gene Therapy
Products. FDA Guidance for Industry, January 201193 | # LV production process timepoints for safety testing # stability studies for bulk vector | Phase | Study type | Temperature | Quality | Lots | Method
Status | Study
duration | |---|------------------------|-------------|-----------------|---------|------------------|-----------------------------| | Preclinical
(IND-FIH) ¹⁰⁶ | Long-term | Nominal | GMP
(Dev OK) | 3 | Qualified | 12 months ^{17,109} | | Phase 1 ¹⁰⁶ | Long-term | Nominal | GMP | 1 to 3 | Qualified | 12 months ^{17,109} | | Pivotal
(registration lots) ¹¹⁰ | Long-term | Nominal | GMP | All PPQ | Validated | 12 months ^{17,109} | | Pivotal
(registration lots) ¹¹⁰ | Stressed & accelerated | °C -20, +5 | GMP | 3 | Validated | 12 months | | Commercial | Long-term | Nominal | GMP | Up to 3 | Validated | 12 months ¹⁰⁹ | # stability studies for finished vector | Material | Phase | Study Type | Temperature | Quality | Lots | Method
Status | Study Duration | | |-----------------|--|---|----------------------------------|-----------------|---------|--------------------|------------------------------------|--| | Finished vector | Preclinical
(IND-FIH) ¹⁰⁶ | Long-term | Nominal | GMP
(Dev OK) | 3 | Qualified | 3 to 5 years ^{17,106,109} | | | Finished vector | Phase 1 ¹⁰⁶ | Long-term | Nominal | GMP | 1 to 3 | Qualified | 3 to 5 years ^{17,106,109} | | | Finished vector | Pivotal
(registration
lots) ¹⁰⁷ | Long-term | Nominal | GMP | All PPQ | Validated
(PPQ) | 3 to 5 years ^{17,106,109} | | | Finished vector | Pivotal
(registration
lots) ^{106,107} | Stressed & accelerated | °C -20, +5,
room temp,
+36 | GMP | 3 | Validated | 72 hr to months | | | Finished vector | Pivotal
(registration
lots) ^{106,107,111} | CCIT | Nominal | GMP | 3 | Validated | 3 to 5 years | | | Finished vector | Pivotal
(registration
lots) ¹⁰⁷ | In-use condit
Stability of m
intermediate
process char | nanufacturing
s during | GMP | 3 | Validated | In-use
conditions and
holds | | | Finished vector | Commercial | Long-term | Nominal | GMP | Up to 3 | Validated | 3 to 5 years ¹¹⁰ | | # **CAR-T Production** # Autologous and allogeneic generation ### Autologous and allogeneic in production # Unit Operations for an Example CAR-T The main manufacturing steps in CAR-T therapy production are: - Cell isolation (leukapheresis) - Activation - Transduction and/or genetic editing - Expansion - Harvest and formulation - Cryopreservation - Reinfusion (post-chemo depletion) # Autologous cell therapy manufacturing process # Autologous cell therapy manufacturing process # Allogeneic cell therapy manufacturing process # Allogeneic cell therapy manufacturing process # Autologous cell therapy testing paradigm # Autologous cell therapy testing paradigm # stability for an autologous CAR-T product to determine shelf life | Attribute category | Test | Time points following lot release (months) | | | | | | | | |----------------------------------|--------------------------------------|--|---|---|---|----|----|----|----| | | | 0 | 3 | 6 | 9 | 12 | 18 | 24 | 36 | | Viable cell count Cell counting | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Cell viability Cell counting | | 1 | / | / | / | / | / | / | 1 | | Safety | Sterility (USP <71> / EUR Ph 2.6.27) | | | | | / | | / | 1 | | Identity % CAR+ CD3+ | | 1 | 1 | / | / | / | / | / | 1 | | Potency Cytokine release (ELISA) | | 1 | / | / | / | / | / | / | 1 | # in-line and at-line PAT for cell therapy process monitoring | Technology | Measurement | | | | |------------------------------|--|--|--|--| | NIR spectroscopy | Cell culture metabolites (glucose, glutamine, lactate, ammonia), viable and total cell density, osmolality | | | | | Raman spectroscopy | Cell culture metabolites (glucose, glutamine, lactate, ammonia), viable and total cell density, osmolality | | | | | Fluorescent sensors | pH and dissolved oxygen | | | | | Refractive index | Compositional changes | | | | | Multi-wavelength fluorimetry | Amino acids | | | | | Holographic imaging | Cell shape/size, cell viability | | | | | Impedance | Biomass/cell viability | | | | | Turbidimetry | Biomass | | | | | HPLC | Media components (amino acids, sugars, proteins, metabolites) | | | | | LC-MS | Media components (amino acids, sugars, proteins, metabolites) | | | | | Coulter counter | Biomass/cell viability | | | | | Imaging | Cell size/shape, cell viability | | | | | Photometric analyzers | Cell culture metabolites (glucose, glutamine, lactate, ammonia) | | | | ### early-phase autologous CAR-T cell product specifications | Quality
Attribute | Parameter | Methodology | Specification | | | | | |----------------------|---|---|---|--|--|--|--| | A | Color | Compendial | Description of color | | | | | | Appearance | Clarity | Compendial | Description of turbidity | | | | | | Identity | lentity Confirmation of identity Flow cytometry | | Anti-XXX CAR+ cells detected (identity confirmed) | | | | | | | Cell viability | Fluorescent
microscopy and image
analysis | Initial specifications based on platform knowledge (product, process), patient population, health authority guidance, | | | | | | Desire | T-cell purity/
immunophenotype | Flow cytometry | and risk-based approach | | | | | | Purity | Product-related impurities | Flow cytometry | | | | | | | | Process-related impurities | ELISA or other suitable methodologies | Initial specifications based on historical process understanding, initial impurity risk assessment or tox assessment | | | | | | Strength | CAR + viable T cells | Flow cytometry | > XX CAR+ cells/mL (strength may be used in lieu of potency) | | | | | | Safety | Transduction controls | qPCR | Initial specifications based on platform knowledge (product, process), patient population, health authority guidance, and risk-based approach. Strength alternative orthogonal control, develop in later phase of development | | | | | | | Endotoxin | Compendial | XX EU/mL | | | | | | | Mycoplasma | Compendial | Not detected | | | | | | | Sterility | Compendial | No growth | | | | | ### commercial-phase autologous CAR-T cell specifications | Quality Attribute | Parameter | Methodology | Specification | |-------------------|-----------------------------------|---|---| | Annogranas | Color | Compendial | Description of color | | Appearance | Clarity | Compendial | Description of turbidity | | Identity | Confirmation of identity | Flow cytometry | Anti-XXX CAR+ cells detected (identity confirmed) | | | Cell viability | Fluorescent
microscopy and image
analysis | | | Purity | T-cell purity/
immunophenotype | Flow cytometry | Meaningful specification established per clinical correlative analysis | | runty | Product-related impurities | Flow cytometry | | | | Process-related impurities | ELISA or other suitable methodologies | Meaningful specification established per process characterization/ impurity risk assessment | | Strength | CAR + viable T cells | Flow cytometry | > XX CAR+ cells/mL | | Potency | Antigen-specific function | Bioassay | Product-specific acceptance criteria established per clinical correlative | | | Transduction controls | qPCR | analysis (potency, transduction controls) | | Safety | Endotoxin | Compendial | XX EU/mL | | | Mycoplasma | Compendial | Not detected | | | Sterility | Compendial | No growth | # cell-based therapy product QTPP | | Category of Attributes | Examples | |---------------------------------|--------------------------|--| | | Therapeutic Indication | Relapsed or Refractory Diffuse Large B-Cell Lymphoma, r/r Acute
Lymphoblastic Leukemia | | τ | Shelf life | years | | General Property | Storage Conditions | 2-8°C, cryopreserved in vapor phase LN ₂ <-130°C | | | Container Closure System | Bag, vial, sterile-sealed | | nera | Dosage Form | Liquid suspension, tissue equivalent, cryopreserved, fresh | | Ger | Dose Regimen | Daily, monthly, single infusion | | | Delivery volume per dose | mL, mL/kg | | | Method of administration | IV administration | | | General attributes | pH, osmolality | | | Appearance | Color, opalescence, visible particulates | | ibutes | Safety | Microbial testing that, depending on the nature of the product, is likely to be based on a multidimensional approach encompassing in-process and final-product testing | | Drug product Quality Attributes | Identity | Tests to distinguish the specified cells through physical or chemical characteristics of the cell line (i.e., phenotype, genotype, or other markers; qPCR of transgene; tissue-specific gene expression) | | o
t | Content | Total cell number, cell concentration (cells/ml), active (transduced) cells/ml | | g produc | Purity and impurities | Tests to assess product purity, considering the product (e.g., live cells, dead cells, cellular impurities, residual vector, process-related impurities such as residual media components, DMSO, anticoagulant) | | Dru | Potency | Measure of the relevant product biological functions. Methods to assess product biological activity are based on the different elements involved with the mechanism of action (MoA), often multiple tests evolving from specific markers in early stage to more functional assays at later stage. | - ATMPs are complex pharmaceuticals - gene therapy: transgene, type of vector, genetically modified cells - cell therapy: autologous, allogeneic, complex process, combination products - assessment requires expertise from several areas e.g. tissue engineering, gene therapy, cell therapy, biotechnology, surgery, pharmacovigilance, risk management, medical devices and ethics - Specific administration of certain ATMPs (catheters, surgery etc.) - Specific safety issues (e.g. integrational mutagenesis of GTMPs, biodistribution/ectopic tissue formation of cell-based MPs) - Nature of disease: monogenetic vs multifactorial - Mode of action: treatment of disease to repair/regeneration - Special challenges concerning manufacturing/quality, safety and efficacy studies - manufacturing constraints - GMP requirements for production - starting and raw materials; continuity of material supply - immature production technologies, comparability - variability and process validation - characterization, potency testing (related to clinical outcome) - non-clinical challenges - proof of concept, safety aspects (species specificities) - clinical aspects - feasibility of dose finding and biodistribution studies in humans, concomitant medication/surgical procedures, efficacy! - Product-related challenges: - safety: dose, tumorigenicity, biodistribution, integration - efficacy: inter-individual variability, administration # Questions?