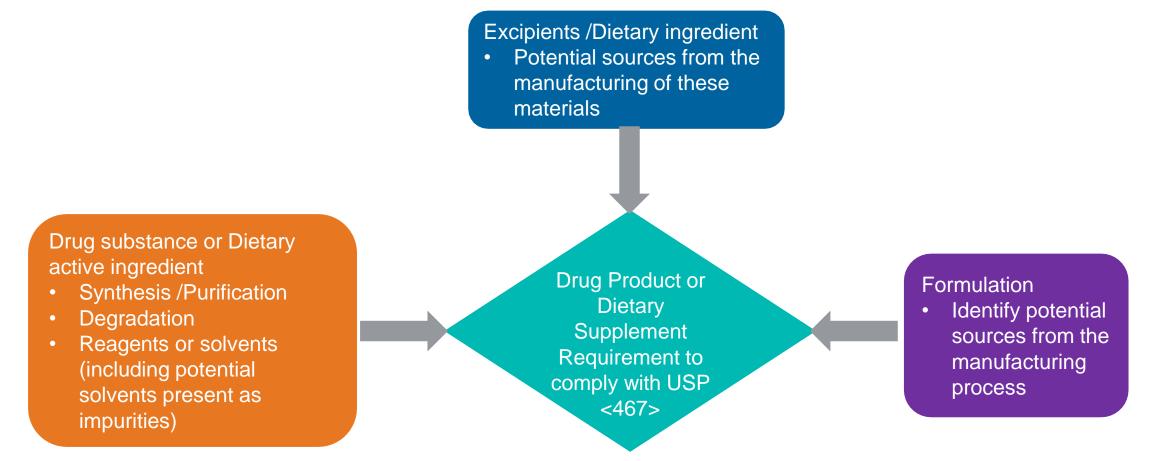
Residual Solvent Impurities; USP <467>

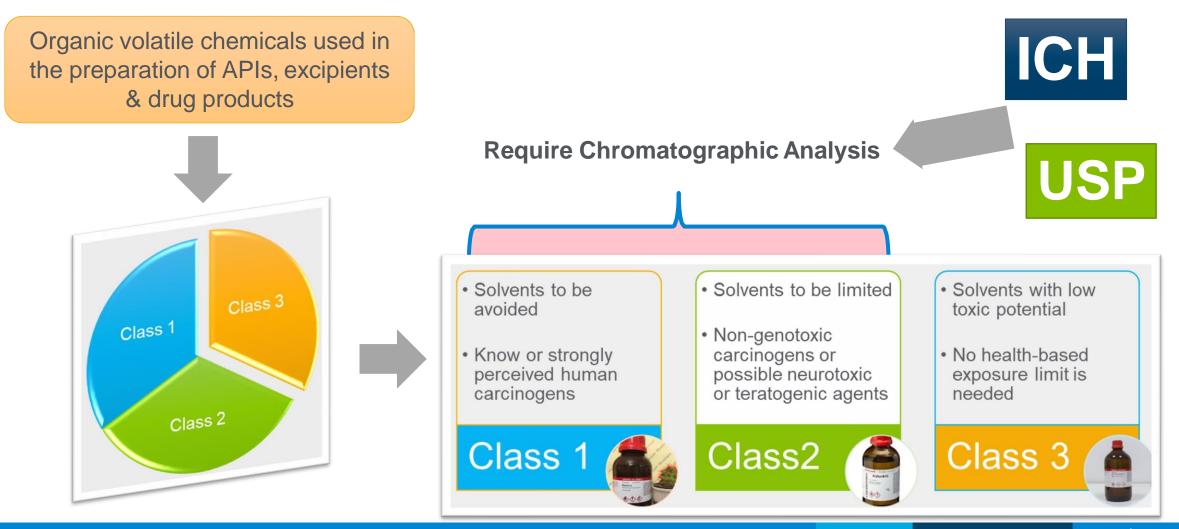
Thanutchaporn Semathong GCMS Product Specialist Agilent Technologies (Thailand)



DE91722834

Potential Sources of Residual Solvents to be Considered

In pharmaceutical drug products and dietary supplements



For more details: refer to 467 RESIDUAL SOLVENTS (uspnf.com)

Residual Solvent Analysis

USP <467> and ICH Q3C (R5 and R8) compliance for residual solvent analysis

USP 467 Limits of Residual Solvents

Table 2. Control Limits for Class 1 Residual Solvents in Official Products: Solvents to Be Avoided

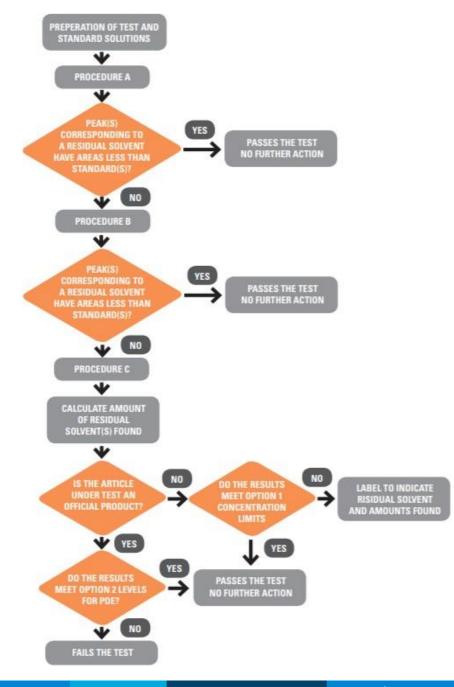
Solvent	Concentration Limit (ppm)	Concern
Benzene	2	Carcinogen
Carbon tetrachloride	4	Toxic and environmental hazard
1,2-Dichloroethane	5	Toxic
1,1-Dichloroethene	8	Toxic
1,1,1-Trichloroethane	1500	Environmental hazard

Table 3. Class 2 Residual Solvents in Official Products

Solvent	PDE (mg/day)	Concentration Limit (ppm)
Acetonitrile	4.1	410
Chlorobenzene	3.6	360
Chloroform	0.6	60
Cumene	0.7	70
Cyclohexane	38.8	3880
1,2-Dichloroethene	18.7	1870
1,2-Dimethoxyethane	1.0	100
N,N-Dimethylacetamide	10.9	1090
N,N-Dimethylformamide	8.8	880
1,4-Dioxane	3.8	380
2-Ethoxyethanol	1.6	160
Ethylene glycol	6.2	620
Formamide	2.2	220
Hexane	2.9	290
Methanol	30.0	3000
2-Methoxyethanol	0.5	50
Methylbutylketone	0.5	50
Methylcyclohexane	11.8	1180
Methylene chloride	6.0	600
▲ Methylisobutylketone	45	4500 (Official 1-Dec-2020)
N-Methylpyrrolidone	5.3	530

Table 3. Class 2 Residual Solvents in Official Products (continued)

Solvent	PDE (mg/day)	Concentration Limit (ppm)
Nitromethane	0.5	50
Pyridine	2.0	200
Sulfolane	1.6	160
Tetrahydrofuran	7.2	720
Tetralin	1.0	100
Toluene	8.9	890
Trichloroethylene	0.8	80
Xylene ^a	21.7	2170

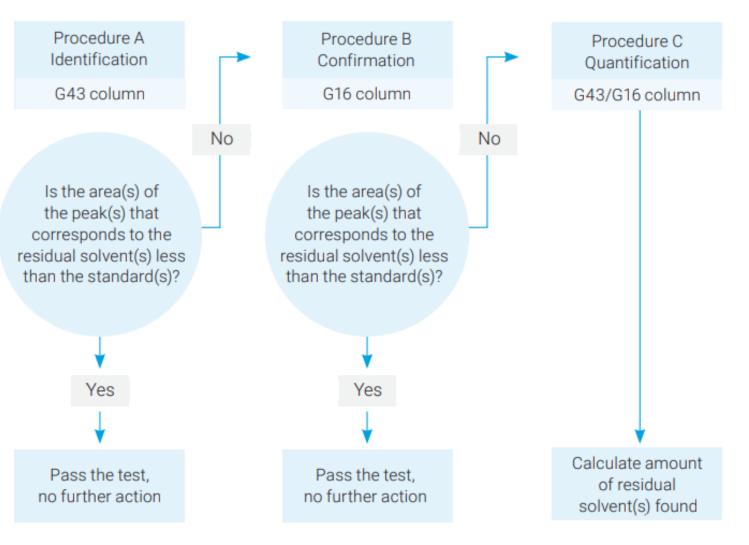

Residual solvents should be limited in drug substances, excipients, dietary ingredients, and official products because of the inherent toxicities of these residual solvents. - 467 RESIDUAL SOLVENTS (uspnf.com)

Compendia Testing Methodology

Determination of residual solvents and decision tree using Procedures A, B, and C

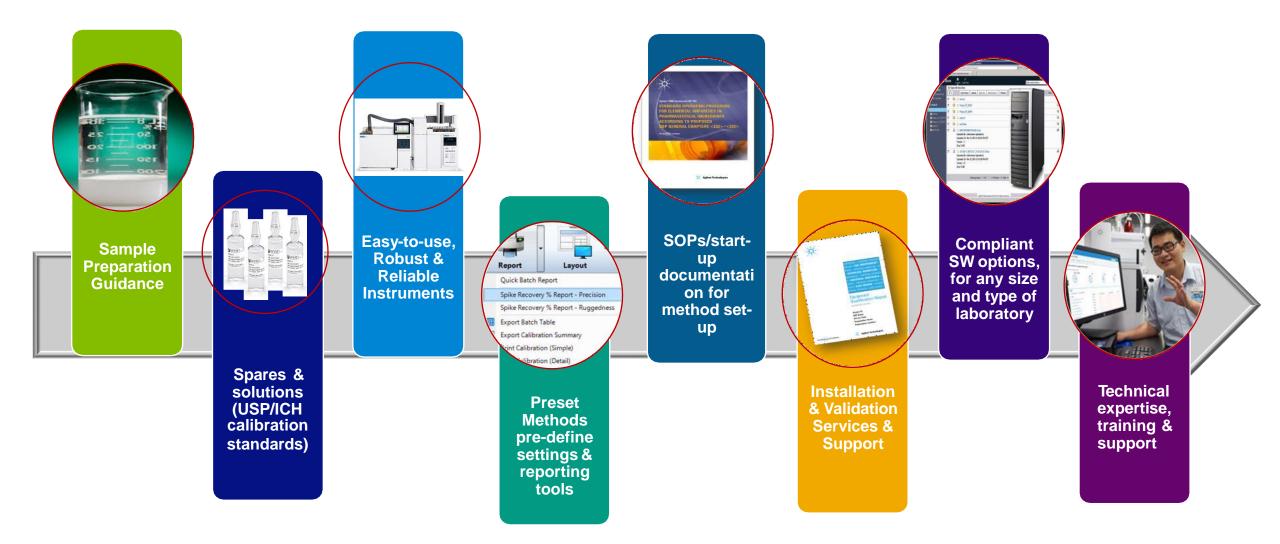
- The method is divided into two separate sections based upon sample solubility and referred to
 - Water-soluble articles
 - Water-insoluble articles
- The methodology for both types of articles is similar and consists of three procedures:
 - Procedure A for identification and limit test
 - Procedure B for confirmatory test
 - Procedure C for quantitative test

USP <467> Analytical flowchart for residual solvent analysis

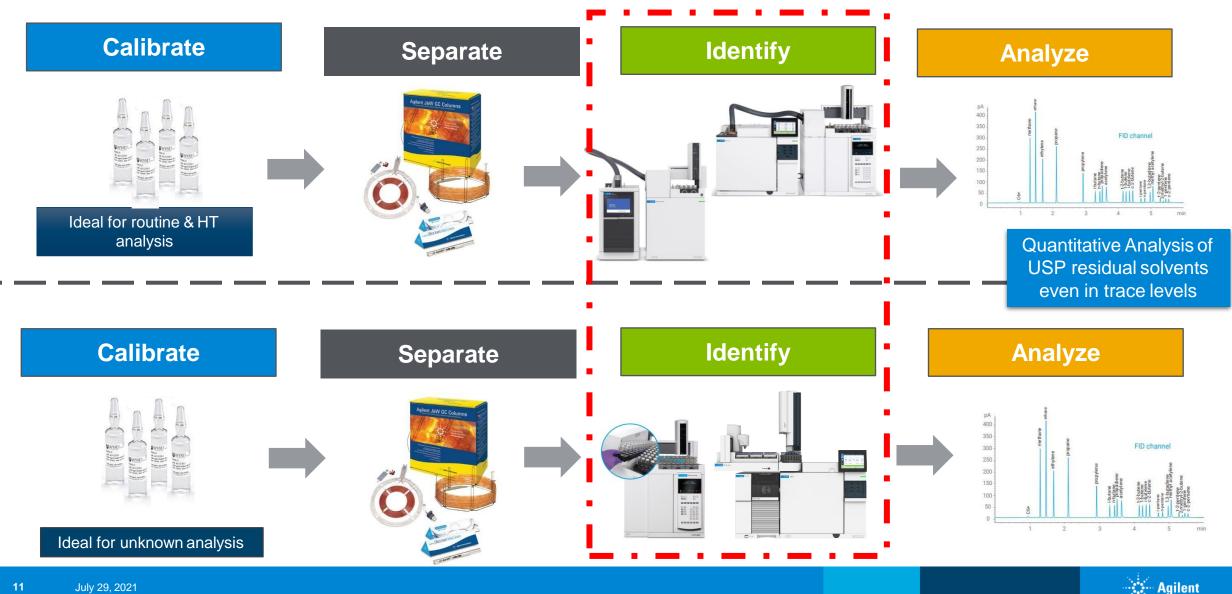

United States Pharmacopeia (USP) Method <467> is the QC method used worldwide and closely follows ICH Q3C guidelines.

The method is composed of 3 analytical procedures for identification & quantification

– Procedure A: Identification and limit testing
 Uses a G43 phase (624-type column)


– Procedure B: Confirms whether an identified solvent is above the regulated limits
 Uses a G16 phase (WAX-type column)

 – Procedure C: Quantitative test using a G43 phase or G16 phase, depending on which produced fewer coelutions.



Agilent Innovative Solutions for Residual Solvent Analysis

Agilent GC/FID and GC/MS Workflow for Residual Solvent Analysis

Confidently identify and quantify residual solvent in APIs and drug products

Residual Solvents Analysis with the Agilent 8697 Headspace Sampler and Intuvo 9000 GC

USP <467> Residual Solvent Requirements

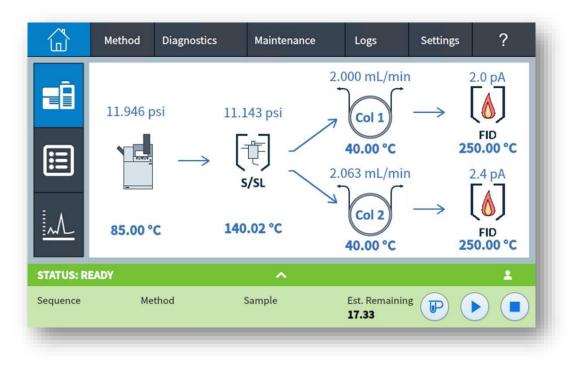
Analysis of residual solvent is a critical application in the pharmaceutical industry.

- The choice of solvent during manufacturing can improve yield or affect chemical properties of the product synthesized.
- Solvents do not enhance the product's efficacy and must be removed as completely as possible to meet product specification and good manufacturing practices.

USP <467> specifies a single column analysis

- A secondary analysis is performed if the solvent is found above limit detection.
- An Intuvo9000 GC configured with an inlet split to two columns and two FIDs can perform both analysis in a single run.

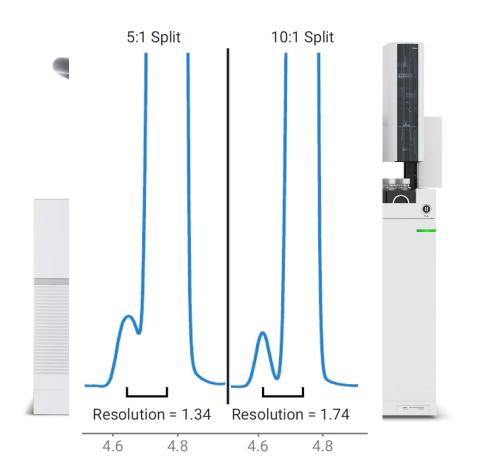
🔆 🕂 Aqilent

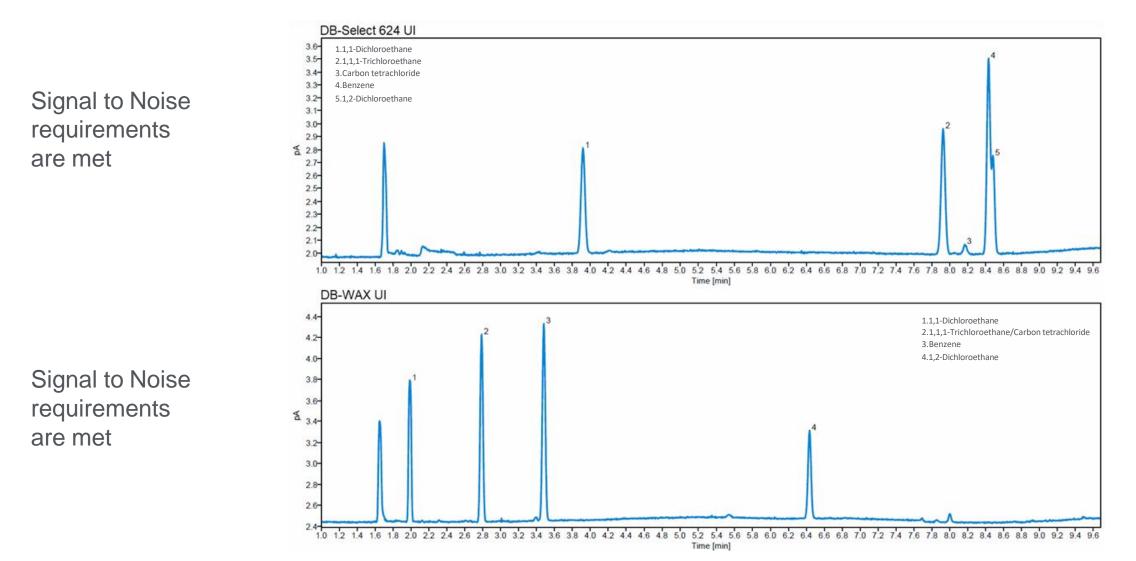

USP <467> Columns and Performance Requirements

Procedure A – Initial identification and limit test

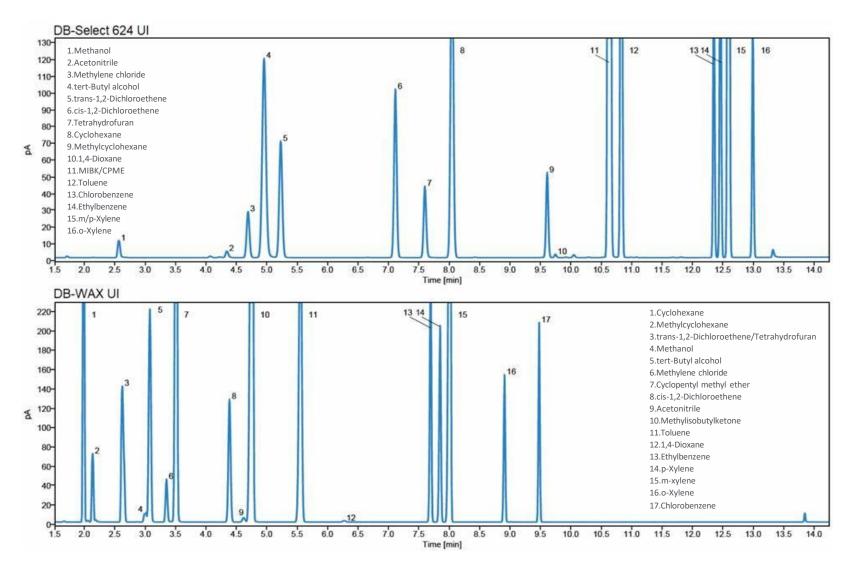
- DB-Select 624 UI (G43 phase)
- s/n of 1,1,1-trichloroethane > 5
- s/n of all Class 1 solvents > 3
- Resolution of acetonitrile and methylene chloride > 1

Procedure B – Secondary analysis for confirmation

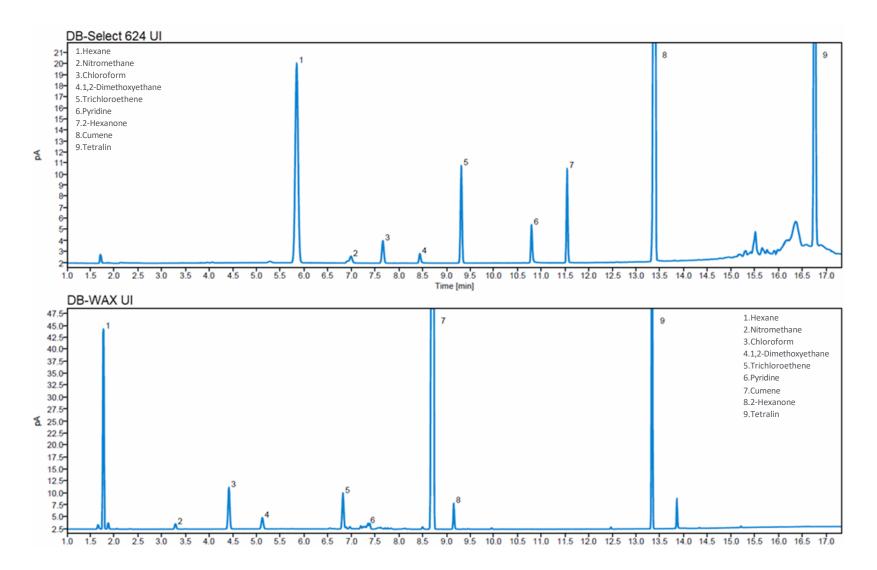

- DB-Wax Ultra Inert (G16 phase)
- s/n of benzene > 5
- s/n of all Class 1 solvents > 3
- Resolution of methylisobutylketone and cisdichloroethene > 1


Method Transfer

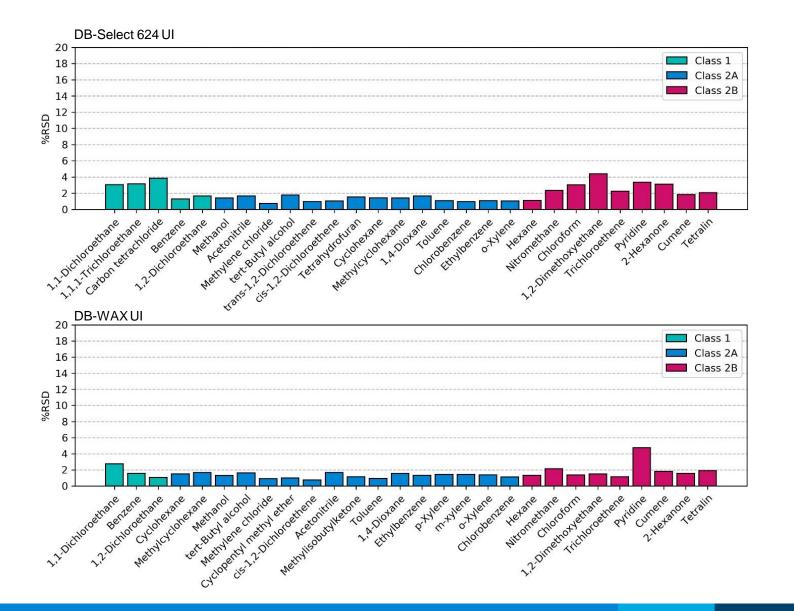
Parameter	Value
	Headspace
Oven	85 °C
Loop	85 °C
Transfer Line Temperature	100 °C
Transfer Line	Fused silica, 530 µm id
Vial Equilibration	40.00 min
Injection Duration	0.50 min
Vial Shaking	Level 2, 25 shakes/min
Vial Fill Mode	Default
Vial Fill Pressure	15 psi
Vial Pressurization Gas	Nitrogen
Loop Fill Mode	Custom, 20 psi/min
Loop Final Pressure	4 psi
Loop Equilibration Time	0.05 min
Loop Volume	1.0 mL
	Inlet (SSL)
Mode	Split
Heater	140 °C
Carrier	Helium
Split Ratio	10:1
Split Flow	20 mL/min
Septum Purge	3 mL/min
Liner	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048)
Liner Septum	
	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048)
Septum	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801)
Septum	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801) 140 °C (p/n G4587-60575)
Septum Jumper Chip	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801) 140 °C (p/n G4587-60575) Columns Agilent DB-Select 624 UI, 30 m × 320 µm, 1.8 µm (p/n 624 123-0334UI-INT);
Septum Jumper Chip Column 1 (Procedure A)	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801) 140 °C (p/n G4587-60575) Columns Agilent DB-Select 624 UI, 30 m × 320 µm, 1.8 µm (p/n 624 123-0334UI-INT); 2 mL/min, constant flow Agilent DB-WAX UI, 30 m × 320 µm, 0.25 µm (p/n 123-7032UI-INT);
Septum Jumper Chip Column 1 (Procedure A) Column 2 (Procedure B)	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801) 140 °C (p/n G4587-60575) Columns Agilent DB-Select 624 UI, 30 m × 320 µm, 1.8 µm (p/n 624 123-0334UI-INT); 2 mL/min, constant flow Agilent DB-WAX UI, 30 m × 320 µm, 0.25 µm (p/n 123-7032UI-INT); 2 mL/min, constant flow
Septum Jumper Chip Column 1 (Procedure A) Column 2 (Procedure B) Inlet Chip	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801) 140 °C (p/n G4587-60575) Columns Agilent DB-Select 624 UI, 30 m × 320 µm, 1.8 µm (p/n 624 123-0334UI-INT); 2 mL/min, constant flow Agilent DB-WAX UI, 30 m × 320 µm, 0.25 µm (p/n 123-7032UI-INT); 2 mL/min, constant flow Inlet splitter chip (p/n G4588-60601)
Septum Jumper Chip Column 1 (Procedure A) Column 2 (Procedure B) Inlet Chip Bus Temperature	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801) 140 °C (p/n G4587-60575) Columns Agilent DB-Select 624 UI, 30 m × 320 µm, 1.8 µm (p/n 624 123-0334UI-INT); 2 mL/min, constant flow Agilent DB-WAX UI, 30 m × 320 µm, 0.25 µm (p/n 123-7032UI-INT); 2 mL/min, constant flow Inlet splitter chip (p/n G4588-60601) Default 40 °C hold for 5.5 min
Septum Jumper Chip Column 1 (Procedure A) Column 2 (Procedure B) Inlet Chip Bus Temperature	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801) 140 °C (p/n G4587-60575) Columns Agilent DB-Select 624 UI, 30 m × 320 µm, 1.8 µm (p/n 624 123-0334UI-INT); 2 mL/min, constant flow Agilent DB-WAX UI, 30 m × 320 µm, 0.25 µm (p/n 123-7032UI-INT); 2 mL/min, constant flow Inlet splitter chip (p/n G4588-60601) Default 40 °C hold for 5.5 min 15 °C/min to 180 °C, hold 2.5 min
Septum Jumper Chip Column 1 (Procedure A) Column 2 (Procedure B) Inlet Chip Bus Temperature Oven	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801) 140 °C (p/n G4587-60575) Columns Agilent DB-Select 624 UI, 30 m × 320 µm, 1.8 µm (p/n 624 123-0334UI-INT); 2 mL/min, constant flow Agilent DB-WAX UI, 30 m × 320 µm, 0.25 µm (p/n 123-7032UI-INT); 2 mL/min, constant flow Inlet splitter chip (p/n G4588-60601) Default 40 °C hold for 5.5 min 15 °C/min to 180 °C, hold 2.5 min Detector (FID)
Septum Jumper Chip Column 1 (Procedure A) Column 2 (Procedure B) Inlet Chip Bus Temperature Oven Heater	Ultra Inert, straight, 0.75 mm id (p/n 5190-4048) 9mm Headspace (p/n 5183-4801) 140 °C (p/n G4587-60575) Columns Agilent DB-Select 624 UI, 30 m × 320 µm, 1.8 µm (p/n 624 123-0334UI-INT); 2 mL/min, constant flow Agilent DB-WAX UI, 30 m × 320 µm, 0.25 µm (p/n 123-7032UI-INT); 2 mL/min, constant flow Inlet splitter chip (p/n G4588-60601) Default 40 °C hold for 5.5 min 15 °C/min to 180 °C, hold 2.5 min Detector (FID) 250 °C


Class 1, DB-Select 624 UI & DB-WAX Ultra Inert

Class 2A, DB-Select 624 UI & DB-WAX Ultra Inert


Resolution > 1

Resolution > 1



Class 2B, DB-Select 624 UI & DB-WAX Ultra Inert

Repeatability (n=10)

Analysis of Three Classes of Residual Solvents in USP <467> and Chinese Pharmacopoeia by using GC/FID/MSD System

Configuration Highlights

- This application covers three classes of solvents with a total of up to 62 compounds.
- A purged two-way CFT device was used to split the column effluent 1:1 to the MSD and FID.
- When unknown peaks or unknown solvents appear, this system is the best solution for solvent identification and quantification
- Both MSD and FID signals can be used for quantitative analysis, MSD is a good quantitative supplement for compounds with poor resolution, while FID can expand the linear range.

Compounds List

The list of compounds in USP <467> and Chinese pharmacopoeia is almost the same.

Class 2

Class	1	Table 1. Class 1 Residual Solvents(Solvents that should be avoided)
	Solvent	Concentration Limit (ppm)
	Benzene	2
	Carbon tetrachloride	4
	1,2-Dichloroethane	5
	1,1-Dichloroethene	8
	1,1,1-Trichloroethane	1500

Class 3

Table 3. Class 3 Residual Solvents

(limited by GMP or other quality-based requirements in drug substances, excipients, and drug products)

Acetic acid	Heptane
Acetone	Isobutyl acetate
Anisole	Isopropyl acetate
1-Butanol	Methyl acetate
2-Butanol	3-Methyl-1-butanol
Butyl acetate	Methylethylketone
tert-Butylmethyl	ether Methylisobutylketone
Cumene	2-Methyl-l-propanol
Dimethyl sulfoxic	
Ethanol	1-Pentanol
Ethyl acetate	1-Propanol
Ethyl ether	2-Propanol
Ethyl formate	Propyl acetate
Formic acid	15

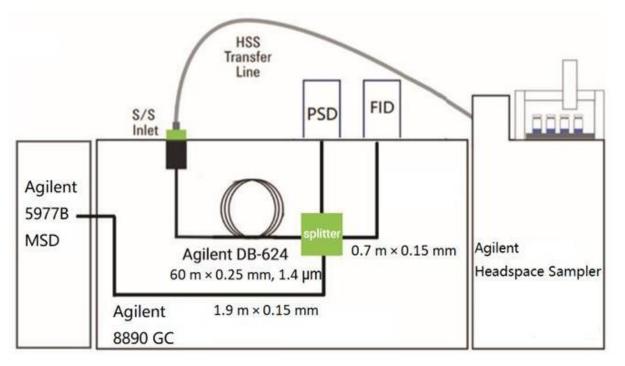
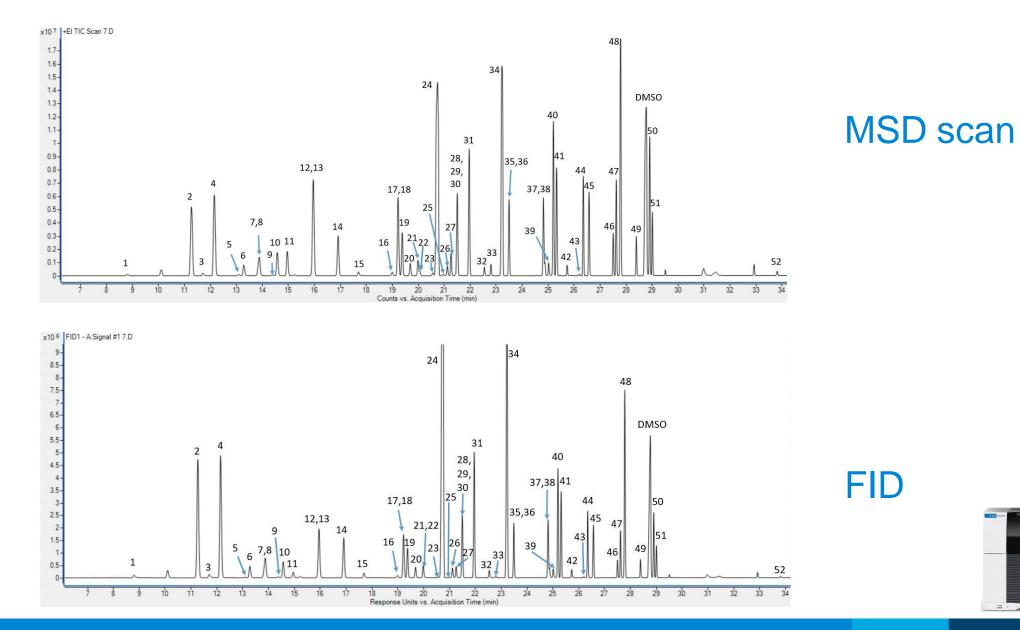

Red: liquid injection Others: headspace injection

	Table 2. Class 2 Residual Solvents
Solvent	PDE (mg/day)
Acetonitrile	4.1
Chlorobenzene	3.6
Chloroform	0.6
Cumene	0.7
Cyclohexane	38.8
1,2-Dichloroethene	18.7
1,2-Dimethoxyethane	1.0
N,N-Dimethylacetamide	10.9
N,N-Dimethylformamide	8.8
1,4-Dioxane	3.8
2-Ethoxyethanol	1.6
Ethylene glycol	6.2
Formamide	2.2
Hexane	2.9
Methanol	30.0
2-Methoxyethanol	0.5
Methylbutylketone	0.5
Methylcyclohexane	11.8
Methylene chloride	6.0
<i>N</i> -Methylpyrrolidone	5.3
Nitromethane	0.5
Pyridine	2.0
Sulfolane	1.6
Tetrahydrofuran	7.2
Tetralin	1.0
Toluene	8.9
Trichloroethylene	0.8
Xylene*	21.7

Headspace Injection

Instrument conditions



Agilent 8890 GC		
Parameter	Value	1
Inlet	SSL, 250 °C, split 10:1	
Liner	Straight, deactivated, 2 mm ID (part number 5181-8818)	
LINEI	Straight, deactivated, 2 min 1D (part humber 5161-6616)	
CFT Device	Purged 2-way splitter Split Ratio 1:1 MSD:FID	İ.
PSD	3.8 psi constant pressure	
Column	Agilent DB-624 60 m × 0.25 mm, 1.4 µm (part number	
	122-1364)	
Carrier	Helium, 1 mL/min, constant flow	
FID Restrictor	0.7 m × 0.15 mm id deactivated fused silica tubing	
MSD Restrictor	1.9 m × 0.15 mm id deactivated fused silica tubing	
Oven	40 °C (10 min), then 5 °C/min to 80 °C, then 12 °C/min to	i.
	220 °C (10 min)	
FID	Temperature: 250 °C	
	Hydrogen: 30 mL/min	
	Air: 300 mL/min	
	Make -up gas (N2):25 mL/min	i
Transfer line	250 °C	
temperature		
Agilent 5977B GC/MSD		
Parameter	Value	
Ionization type	El	
Source temperature	230 °C	
Quad temperature	150 °C	
Drawout plate	3 mm	
Tune file	Atune.u	
Acquisition type	Scan	
Solvent delay	6 min	
Relative Voltage	0	

Headspace Injection

Headspace Injection

Results of the **52 compounds**

							Area	MDL (MSD)
					MSD	FID	RSD%	µg/mL
				Linearity				
No.	Name	RT	m/z	range(µg/mL)	R2	R2	L4 (n=8)	L2 (n=8)
1	Methanol	8.818	31	0.75-150	0.9998	0.999	12.2	0.194
2	Pentane	11.251	43	0.5-100	0.9944	0.999	72	0.1428
3	Ethanol	11.73	31	2-100	0.9999	0.999	31.2	0.5137
4	Ethyl ether	12.142	74.1	0.5-100	0.9911	0.999	34.3	0.1469
5	1,1-Dichloroethene	13.083	61	0.004-0.8	0.9997	0.998	51.7	0.0028
6	Acetone	13.283	43	0.5-100	0.9999	0.999	52.1	0.2265
7	Isopropanol	13.854	45	0.5-100	0.9997	0.997	92.9	0.2446
8	Ethyl formate	13.873	45	0.5-100			4.3	0.2449
9	Acetonitrile	14.39	41	0.1-20	0.9996	0.998	14.2	0.0319
10	Methyl acetate	14.564	43	0.5-100	0.9998	0.999	32.7	0.4236
11	Methylene chloride	14.947	84	0.15-30	0.9997	0.999	72.1	0.0326
	2-Methoxy-2-							0.0352
12	methylpropane	15.938		0.1-20	0.9988	0.999		0.0352
13	trans-1,2-Dichloroethene			0.235-47	0.9969	0.999		0.065
14	Hexane	16.899		0.1-20	0.9995	0.999		0.0739
15	1-Propanol	17.712	31	0.5-100	0.9995	0.999		0.1799
16	Nitromethane	19	46	0.5-100	0.9999	0.999		0.2521
17	cis-1,2-Dichloroethene	19.21	96	0.235-47	0.9988	0.999		0.0447
18	2-Butanone	19.225		0.5-100	0.998	0.999		0.1471
19	Ethyl acetate	19.375	43	0.5-100	0.9986	0.999	71.4	0.3054
20	2-Butanol	19.688		0.5-100	0.9998	0.999		0.2371
21	Tetrahydrofuran	19.985		0.18-36	0.9998	0.999	32.1	0.0532
22	Chloroform	20.054	83	0.015-3	0.9997		1.6	0.0058
23	1,1,1-Trichloroethane	20.546	97	0.005-1	0.9999	0.999	31.3	0.0025
24	Cyclohexane	20.707		1.0-49 (195)*	0.9908	0.999		0.188
25	Carbon tetrachloride	20.962	117	0.002-0.4	0.9998	0.999	22.8	0.002

					MSD	FID	Area RSD%	MDL (MSD) µg/mL
				Linearity				
No.	Name	RT	1 m/ z	range(µg/mL)	R2	R2	L4 (n=8)	L2 (n=8)
27	1,2-Dimethoxyethane	21.20	65 45	0.5-100	0.9999	0.999	1	0.2561
28	Benzene	21.4	42 78	0.001-0.2	0.9995	0.9998	5.8	8000.0
29	1,2-Dichloroethane	21.4	42 62	0.01-0.5	0.9989		1.5	0.0016
30	Isopropyl acetate	21.4	96 61	0.5-100	0.9985	0.999	0.8	0.1636
31	Heptane	21.9	56 71	0.1-20	0.9974	0.999	2.4	0.0343
32	1-Butanol	22.54	47 56	0.5-100	0.9994	0.9998	2.4	0.1717
33	Trichloroethylene	22.7	91 130	0.015-3	0.9999	0.9999	1.8	0.0065
34	Methyl cyclohexane	23.20	08 83	0.3-15 (59)*	0.9989	0.999	2.3	0.0722
35	1,4-Dioxane	23.48	89 88	0.095-19	0.9999	0.999	3.3	0.0549
36	Propyl acetate	23.49	91 43	0.5-100	0.9966		3	0.2675
37	4-Methyl-2-pentanone	24.8	15 43	0.5-100	0.9985	0.999	2.2	0.1429
38	Isoamyl alcohol	24.8	79 55.1	0.5-100	0.9991	0.999	2.4	0.2562
39	Pyridine	25.02	24 79	2-100	0.9992	0.999	2.1	0.5016
40	Toluene	25.19	96 91	0.225-22 (44)*	0.9964	0.9998	2.1	0.0651
41	Isobutyl acetate	25.3	22 56	0.5-100	0.9958	0.9999	2.1	0.1784
42	1-Pentanol	25.73	35 42	0.5-100	0.9996	0.9998	2.1	0.3319
43	2-Hexanone	26.20	01 58	0.06-3	0.9995	0.9998	2.1	0.0107
44	Butyl acetate	26.3	51 43	0.5-100	0.9957	0.9999	2.3	0.2502
45	Tetrahydrothiophene	26.5	71 88	0.5-100	0.9996	0.999	1.4	0.18
46	Chlorobenzene	27.5	03 112	0.09-18	0.9999	0.999	2.5	0.0215
47	Ethylbenzene	27.6	18 91	0.09-18	0.9986	0.999	4.1	0.0288
48	m,p-xylene	27.78	82 106	0.4-40 (80)*	0.9963	0.999	3.3	0.1074
49	o-xylene	28.3	93 91	0.05-10	0.9999	0.999	2.6	0.0173
50	Isopropylbenzene	28.9	04 105	0.1-20	0.9983	0.999	2.4	0.0391
51	Anisole	29.0	11 108	0.5-100	0.9999	0.999	2.8	0.1892
52	1,2,3,4- Tetrahydronaphthalene	33.8	14 104	0.015-3	0.9998	0.999;	2	0.0045

Liquid Injection

Compounds list in liquid injection

2-Methoxyethanol

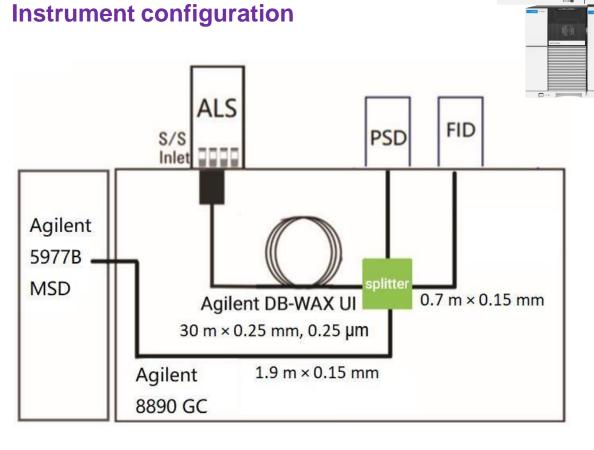
2-Ethoxyethanol

N,N-dimethylformamide

N,N-dimethylacetamide

Acetic acid

Formic acid

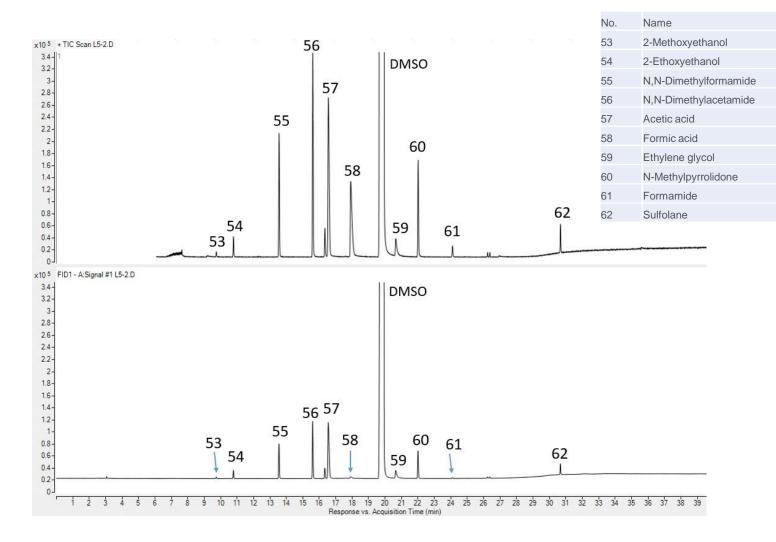

Ethylene glycol

N-methylpyrrolidone

Formamide

Sulfolane

37

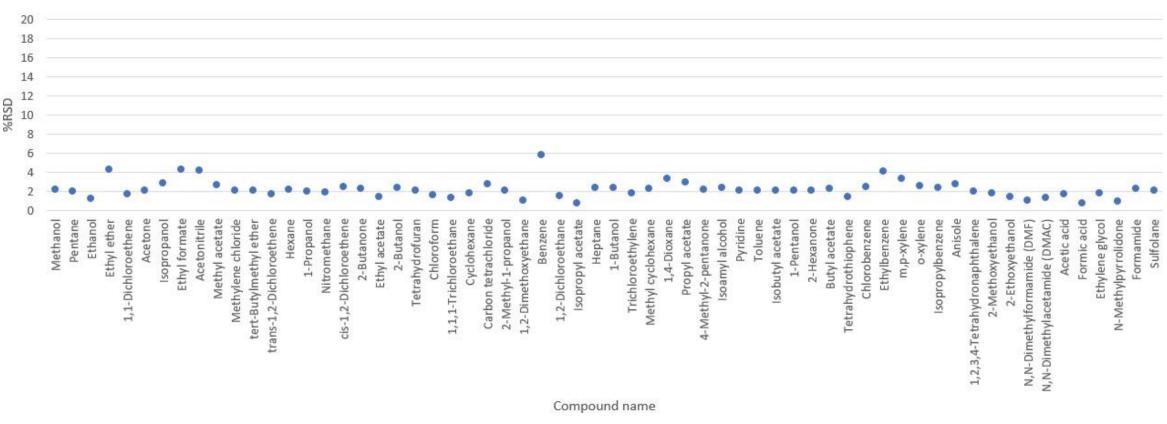


Standards: USP 467 Class 2C (Agilent p/n: 5190-0493) acetic acid (99.8%, purity), formic acid (98%, purity)

Liquid Injection

Results of the 10 compounds

Agilent 8890 GC					
Parameter	Value				
Inlet	SSL, 250 °C, split 30:1				
Liner	Ultra Inert, split, low pressure drop, glass wool (p/n: 5190- 2295)				
Injection volume	0.5 uL				
CFT Device	Purged 2-way splitter Split Ratio 1:1 MSD:FID				
PSD	3.8 psi constant pressure				
Column	Agilent DB-wax UI 30 m × 0.25 mm, 0.25 μm (part number 122-7032UI)				
Carrier	Helium, 1 mL/min, constant flow				
FID Restrictor	$0.7\mbox{ m}\times0.15\mbox{ mm}$ id deactivated fused silica tubing				
MSD Restrictor	1.9 m \times 0.15 mm id deactivated fused silica tubing				
Oven	40 °C, then 5 °C/min to 160 °C, then 10 °C/min to 220 °C (10 min)				
FID	Temperature: 250 °C Hydrogen: 30 mL/min Air: 300 mL/min Make -up gas (N2):25 mL/min				
Transfer line temperature	250 °C				
Agilent 5977B GC/MSD					
Parameter	Value				
lonization type	EI				
Source temperature	230 °C				
Source temperature Quad temperature	230 °C 150 °C				
Quad temperature	150 °C				
Quad temperature Drawout plate	150 °C 3 mm				
Quad temperature Drawout plate Tune file	150 °C 3 mm Atune.u				



Liquid Injection

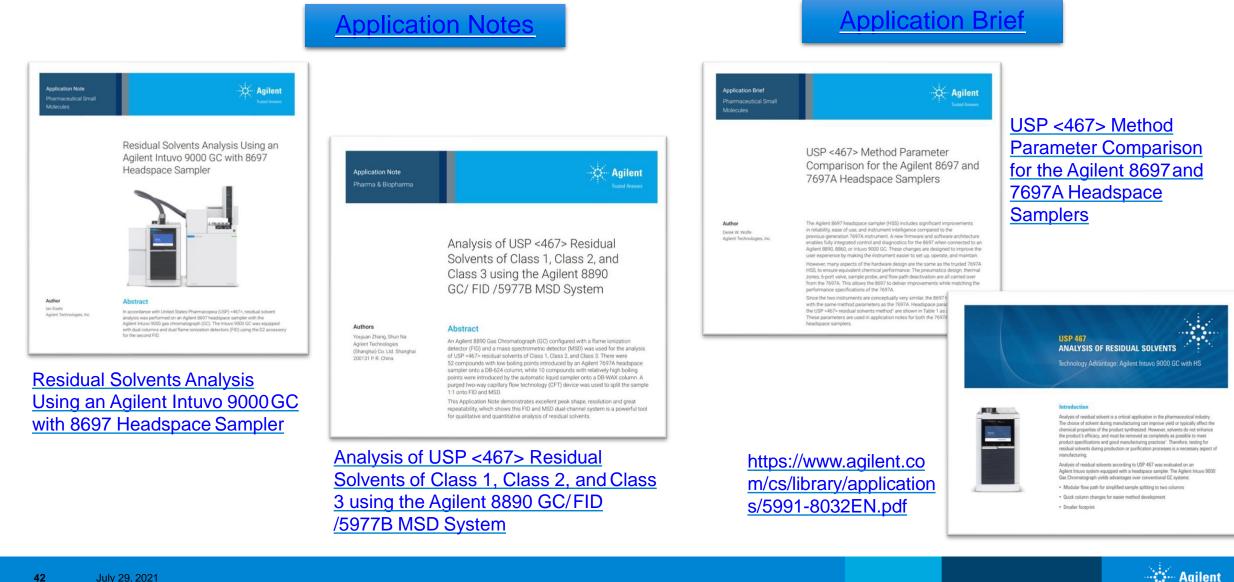
Results of the 10 compounds

					R ²			MDL
				Linearity range			Area RSD%	(MSD)
No.	Name	RT	m/z	μg/mL	MSD	FID	L4 (n=8)	µg/mL
53	2-Methoxyethanol	9.783	45	5-50	0.9984	0.9995	1.8	0.68
54	2-Ethoxyethanol	10.816	59	16-161	0.9973	0.9987	1.4	1.93
55	N,N-Dimethylformamide (DMF)	13.607	73	88.3-883	0.9997	0.9999	1	2.19
56	N,N-Dimethylacetamide (DMAC)	15.667	87	109.4-1094	0.9997	0.9996	1.3	2.58
57	Acetic acid	16.493	60	400-3000	0.9984	0.9997	1.7	90.12
58	Formic acid	17.774	46	400-3000	0.9995	0.9939	0.8	120
59	Ethylene glycol	20.652	31	62.2-622	0.9983	0.9982	1.8	4.44
60	N-Methylpyrrolidone	22.074	98	53-530	0.9995	0.9997	0.9	3.02
61	Formamide	24.157	45	22-221	0.9992	0.9986	2.3	2.11
62	Sulfolane	30.706	120	16-160	0.9994	0.9997	2.1	1.33

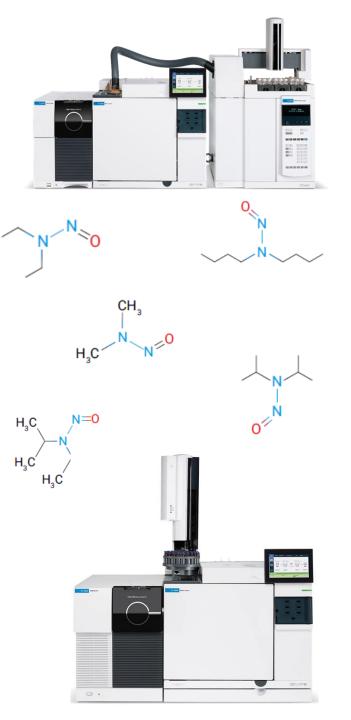
Repeatability (n=8) for 62 Compounds

Area %RSD

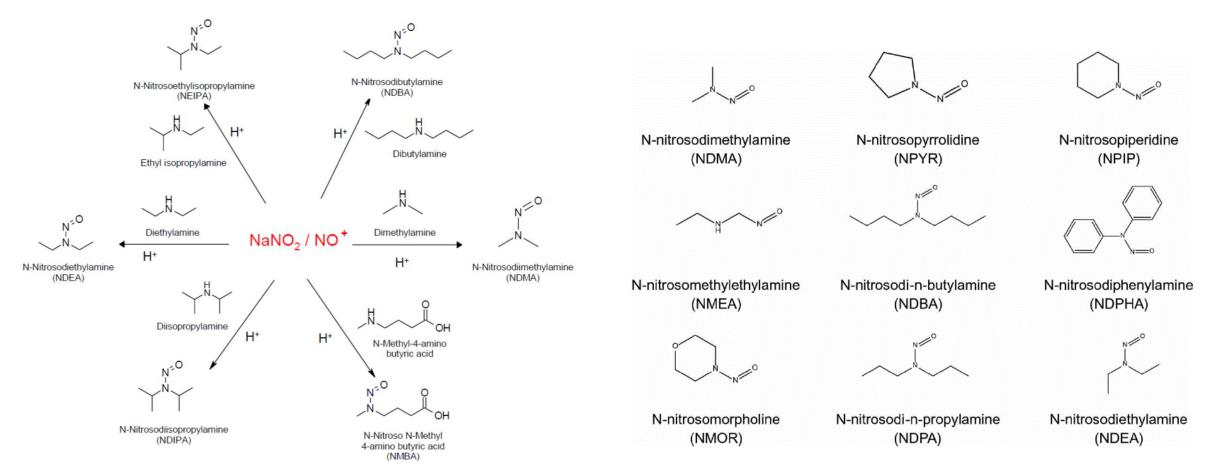
Agilent


Summary

- Residual solvents of Class 1, 2, and 3 were tested using the Agilent 8890 GC/FID/MSD
 - system.
- For new drug development and quality control, FID and MSD dual-channel configurations can be powerful tools for solvent residue analysis.
- MSD analysis can avoid the uncertainty of more than 60 solvents involved in drug production.
- When unknown peaks or unknown solvents appear, this system is the best solution for
 - solvent identification and quantification



Learn More – @Agilent.com


GC/MS Methods For The Accurate Determination of Nitrosamines Produced In The Manufacture Of APIs and Drugs

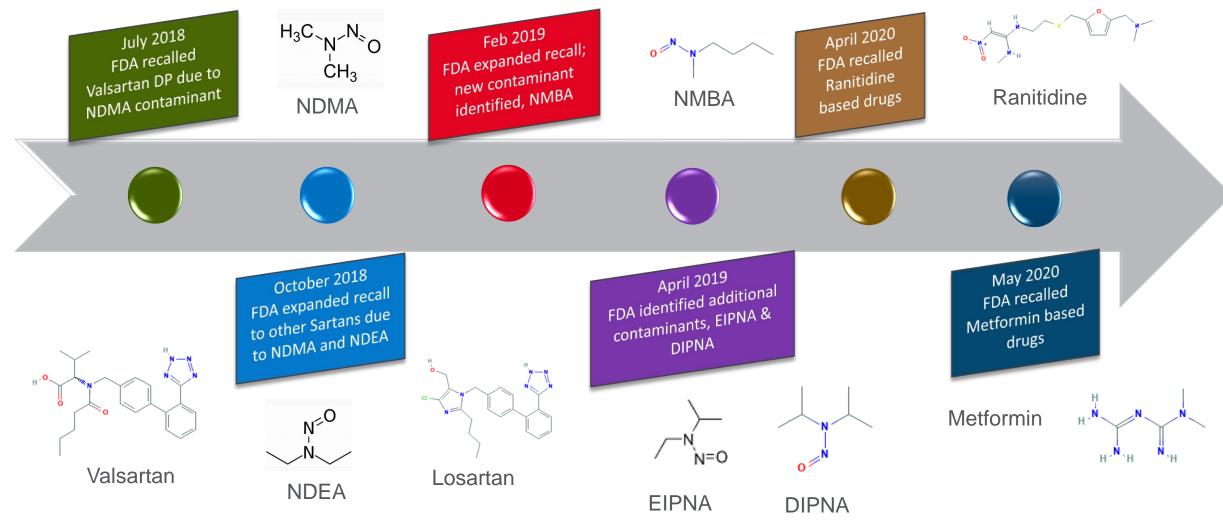
For Research Use Only. Not for use in diagnostic procedures.

What are Nitrosamines?

Nitrosamines are formed when **nitrites** react with a secondary or tertiary amine. The concentration of nitrosamines tends to increase over time, and their formation is enhanced by high temperatures or high acidity.

https://www.lhasalimited.org/Public/Library/2020/ICH%20M7%20-%20Regulatory%20Updates%20and%20Industry%20Practices.pdf

Nitrosamine Impurities Are Not Limited to Sartans & Ranitidine


Possible root causes of nitrosamine formation

- Formation of nitrosamine during synthesis i.e. in the presence of raw materials, starting materials and intermediates and/or through incomplete depletion of nitrosamine in subsequent synthesis steps
- Use of sodium nitrite or other nitrites in the presence of secondary or tertiary amines in the course of the API synthesis
- Cross contamination with sodium nitrite despite intensive but inefficient cleaning of the manufacturing equipment
- When solvents such as DMF (dimethylformamide), DMA (dimethylacetamine), or DEA (diethylacetamide) are used in the manufacturing of a drug substance
- Recycled solvents, especially when performed by an external partner
- Raw materials, starting materials, excipients, reagents, etc. that do not come from adequately qualified suppliers
- Regulatory agencies advises companies on steps to take to avoid nitrosamines in medicines
- Risky preparations must be tested for nitrosamine contamination via validated and appropriately sensitive analytical **methods** and inform competent authorities of nitrosamine detection, irrespective of the amount detected.

•

Why is Nitrosamines Analysis Important?

For detailed info, refer to: <u>FDA Press Releases</u>; <u>EMA Press Releases</u>

Published FDA Testing Methods For The Detection of Nitrosamines

Date	Method	System	Analyte LOQ
1/28/2019	Combined headspace method	Agilent 7890B GC - 5977A MSD - 7697A HS	NDMA 0.10ppm NDEA 0.05ppm
04/19/2019 and later updated 4/21/2019	Combined direct injection method Direct injection GC-MS method	Agilent 7890 GC-7010 QQQ (not declared in the publication)	NDMA 0.013ppm NDEA 0.08ppm NDIPA 0.08ppm NEIPA 0.08ppm NDBA 0.040ppm
4/29/2019	Headspace GC-MS method	Agilent 7890B GC - 5977A MSD - 7697A HS	NDMA 0.05ppm NDEA 0.05ppm NDIPA 0.05ppm NEIPA 0.05ppm
10/17/2019	LC-Triple Quad	Agilent 6420 Triple Quad LC/MS system with APCI source or equivalent	NDMA 0.03ppm
5/21/2019	RapidFire-MS/MS method	Agilent RapidFire-6460C	NDIPA 0.1ppm NEIPA 0.1ppm NMBA 0.1ppm NDBA 0.1ppm Not Recommend for NMDA/NDEA

• The LC-HRMS and RapidFire-MS/MS methods are the first methods FDA has posted for detecting NMBA.

FDA-published testing methods to provide options for regulators and industry to detect NDMA and NDEA impurities

The links below are to FDA-published testing methods to provide options for regulators and industry to detect nitrosamine impurities in ARB drug substances and drug products. These methods should be validated by the user if the resulting data are used to support a required quality assessment of the API or drug product, or if the results are used in a regulatory submission.

- Combined headspace method: a GC/MS method that allows determination of both N-Nitrosodimethylamine (NDMA) and N-Nitrosodiethylamine (NDEA) simultaneously
- Combined direct injection method: a GC-MS/MS method that allows for determination of both NDMA and NDEA simultaneously
- Direct injection GC-MS method: a method that can detect NDMA, NDEA, N-Nitrosodiisopropylamine (NDIPA), N-Nitrosoethylisopropylamine (NEIPA), and N-nitrosodibutylamine (NDBA)
- Headspace GC-MS method: a method that can detect NDMA, NDEA, NDIPA, and NEIPA
- LC-HRMS method: a method that can detect NDMA, NDEA, NEIPA, NDIPA, NDBA, and N-Nitroso-N-methyl-4-aminobutyric acid (NMBA)
- RapidFire-MS/MS method: a method that can detect NEIPA, NDIPA, NDBA, and NMBA. We do not recommend using this method to detect NDMA or NDEA because it is less sensitive to those impurities.

The LC-HRMS and RapidFire-MS/MS methods are the first methods FDA has posted for detecting NMBA. The European Directorate for the Quality of Medicines (EDQM) has also published methods to detect NDMA and NDEA C. FDA has not validated EDQM's methods.

USFDA Methods and Limits Using GC/MS

Updated 1/25/19

Center for Drug Evaluation and Research Office of Pharmaceutical Ouality Office of Testing and Research Division of Pharmaceutical Analysis

Updated 1/25/19

U.S. FOOD & DRUG FDA ADMINISTRATION

Center for Drug Evaluation and Research Office of Pharmaceutical Quality Office of TestingandResearch Division of Pharmaceutical Analysis

Combine d Direct Injection N-Nitrosodimethylamine (NDMA) and N-Nitrosodiethylamine (NDEA) Impurity Assay by GC/MS

GC/MS Headspace Method for Detection of NDMA in Valsartan Drug Substance and Drug Products

Background:

Valsartan products are used to treat high blood pressure and congestive heart failure. On July 13, 2018, FDA announced a recall of valsartan tablets because of the potential for certain products to contain an impurity, N-nitrosodimethylamine (NDMA). This impurity is classified as a probable human carcinogen and is believed to have been introduced into the finished products as a result of the manufacturing process of the drug substance. OTR has been asked to develop a gas chromatography-mass spectrometry (GC/MS) headspace method to detect the presence of NDMA in valsartan drug substance and drug products.

Conclusions:

The OTR method was developed on drug substance samples. The method details are reported below. A separate report including full method validation will follow.

Impurity	LOD (ppm)	LOQ (ppm)
N-nitrosodimethylamine (NDMA)	0.05	0.3

Background:

Valsartan products are used to treat high blood pressure and congestive heart failure. On July 13, 2018, FDA announced a recall of Valsartan tablets because of the potential for certain products to contain an impurity, N-Nitrosodimethylamine (NDMA). A second impurity was subsequently reported, N-Nitrosodiethylamine (NDEA). NDMA and NDEA are classified as probable human carcinogens and were believed to have been introduced into the finished products because of the manufacturing processes used to make the drug substance. OTR has developed a gas chromatography-mass spectrometry (GC/MS) headspace method to detect the presence of NDMA and NDEA in valsartan drug substance.

Combined N-Nitrosodimethylamine (NDMA) and N-Nitrosodiethylamine (NDEA)

Impurity Assay

by GC/MS-Headspace

Conclusions:

The combined method has been validated to simultaneously quantify NDMA and NDEA.

Impurity	LOD (ppm)	LOQ (ppm)
N-Nitrosodimethylamine (NDMA)	0.005	0.10
N-Nitrosodiethylamine (NDEA)	0.02	0.05

Background: Valsartan products are used to treat high blood pressure and congestive heart failure. On July 13, 2018, FDA announced a recall of valsartan tablets because of the potential for certain products to contain an impurity, N-nitrosodimethylamine (NDMA). This impurity is classified as a probable human carcinogen and is believed to have been introduced into the finished products as a result of the manufacturing process of the drug substance. Subsequently, an additional nitrosamine, N-nitrosodiethylamine (NDEA), has also been detected in some valsartan products. OTR has been asked to develop a gas chromatographytandem mass spectrometry (GC-MS/MS) method utilizing liquid injection.

Conclusions: The combined method has been validated to simultaneously quantify NDMA and NDEA.

Impurity	Drug Substance Limit of Quantitation (LOQ), ppm	Drug Product Limit of Quantitation (LOQ), ppm	
N-nitrosodimethylamine (NDMA)	0.05	0.08	
N-nitrosodiethylamine (NDEA)	0.03	0.04	
Impurity	Drug Substance Limit of Detection (LOD), ppm	Drug Product Limit of Detection (LOD), ppm	
N-nitrosodimethylamine (NDMA)	0.010	0.015	
N-nitrosodiethylamine (NDEA)			
	ed on the ICH's statistical formu deviation of y-intercepts for t sion line.		

Latest Methods on GC/MS Updated April 2019

FDA U.S. FOOD & DRUG ADMINISTRATION

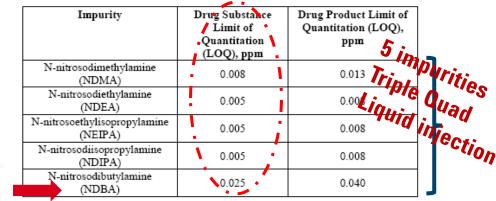
4/11/2019

Combined Headspace N-Nitrosodimethylamine (NDMA), N-Nitrosodiethylamine (NDEA), N-Nitrosoethylisopropylamine (NEIPA), and N-Nitrosodiisopropylamine (NDIPA) Impurity Assay by GC-MS/MS

Background

Valsartan products are used to treat high blood pressure and congestive heart failure. On July 13, 2018. FDA announced a recall of valsartan tablets because of the potential for certain products to contain nitrosamine impurities. These impurities: (N-nitrosodimethylamine (NDMA), N-Nitrosodiethylamine (NDEA), N-diisopropylnitrosoamine (NDIPA), and N-ethyl-Nisopropylnitrosoamine (NEIPA) are classified as probable human carcinogens and are believed to have been introduced into the finished products because of the manufacturing process. OTR has been asked to develop a gas chromatography-mass spectrometry (GC/MS) headspace method to comprehensively detect the presence of NDMA, NDEA, NDIPA, and NEIPA in angiotensin II receptor blockers (ARBs).

A information of four nitrosamine impurities in ARB drug substance and drug product. The specific security details of the validated method for each of the four nitrosamine impurities are reported single elow. The third was developed and validated on valsartan drug substance and drug product. A imple valuation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the four nitrosemine intervaluation of the validated method for each of the validated method for each of the four nitrosemine intervaluatintervaluation of the validated method for each o


Impurity	Drug Substance LOQ, ppm	Drug Substance LOD, ppm	Drug Product LOQ, ppm	Drug Product LOD, ppm		
NDMA	0.05	0.01	0.05	0.01		
NDEA	0.05	0.01	0.05	0.01		
NEIPA	0.05	0.025	0.05	0.025		
NDIPA	0.05	0.025	0.05	0.025		

Combined Direct Injection N-Nitrosodimethylamine (NDMA), N-Nitrosodiethylamine (NDEA), N-Nitrosoethylisopropylamine (NEIPA), N-Nitrosodiisopropylamine (NDIPA), and N-Nitrosodibutylamine (NDBA) Impurity Assay by GC-MS/MS

Background: Valsartan products are used to treat high blood pressure and congestive heart failure. On July 13, 2018, FDA announced a recall of valsartan tablets because of the potential for certain products to contain an impurity, N-nitrosodimethylamine (NDMA). This impurity is lassified as a probable human carcinogen and is believed to have been introduced into the inished products as a result of the manufacturing process. Subsequently, an additional itrosamine, N-nitrosodiethylamine (NDEA), has also been detected in some valsartan products. I-Nitrosoethylisopropylamine (NEIPA), N-Nitrosodiisopropylamine (NDIPA), and Nlitrosodibutylamine (NDBA), and N-Nitrosomethyl-4-amino-butyric acid (NMBA) have also een flagged as potential nitrosamine impurities. OTR has been asked to develop a gas chromatography-tandem mass spectrometry (GC-MS/MS) method utilizing liquid injection to look for all these nitrosamine impurities.

Conclusions: The combined method has been validated to simultaneously quantify NDMA, NDEA, NEIPA, NDIPA, and NDBA in Valsartan API and verified for Valsartan drug products. It should be verified for other sartan API's and drug products.

4/11/2019

Why GC/MS for Nitrosamines Analysis?

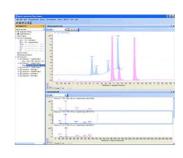
Highlights – GC/MS approaches

- 1. Cost effective, easy to use
- 2. Quick implementation in labs
- 3. More API can be used (100 mg/mL or more) for sample preparation
- 4. Most APIs are insoluble in Dichloromethane, so doesn't overload column
- 5. Easy sample preparation
- 6. All Sartans can be analyzed by a single GC-MS/MS method. No method modification because of API or formulation (tested for Valsartan, Irbesartan, Losartan, Telmisartan, Olmesartan) Lower detection limits can be achieved
- 7. NMDA has low molecular weight (74.04) and is volatile.

GC/MS Based Targeted Quantitation of Nitrosamines in APIs and Drug Products

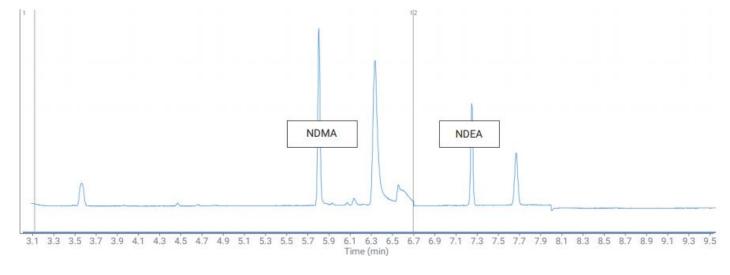
Quantitative Analysis of **4** Nitrosamines

Quantitative Analysis of **5** Nitrosamines

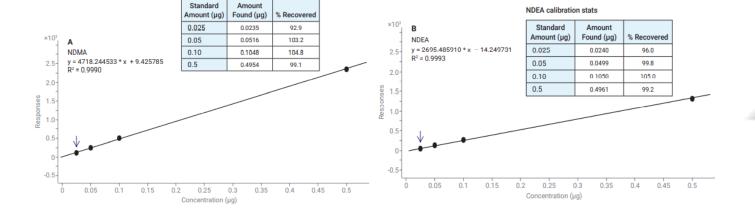

8890 GC/7697A HSS/ 5977B MSD

PN: 122-7033 J&W DB-WAX GC Column 30 m, 0.25 mm, 0.50 μm, 7 inch cage

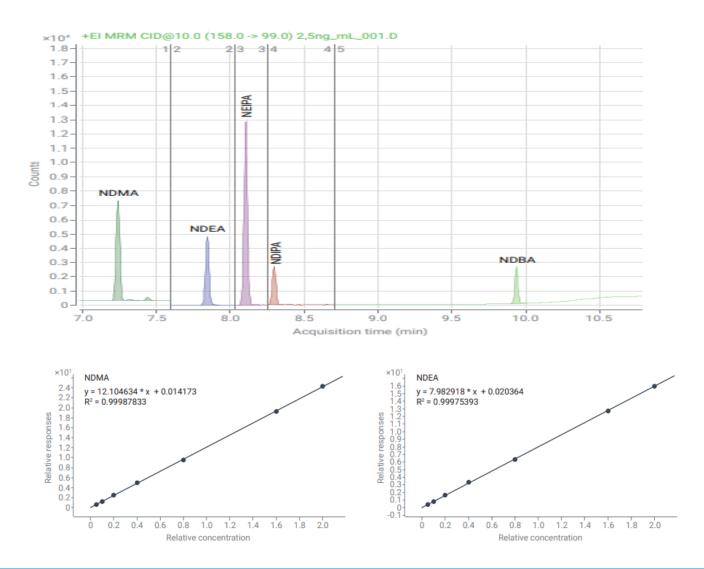
GC Columns & Supplies


MassHunter

8890 GC/7693 LS/ 7010B TQ
 PN: CP9206
 J&W VF-WAXms GC Column
 30 m, 0.25 mm, 1.00 μm, 7 inch cage

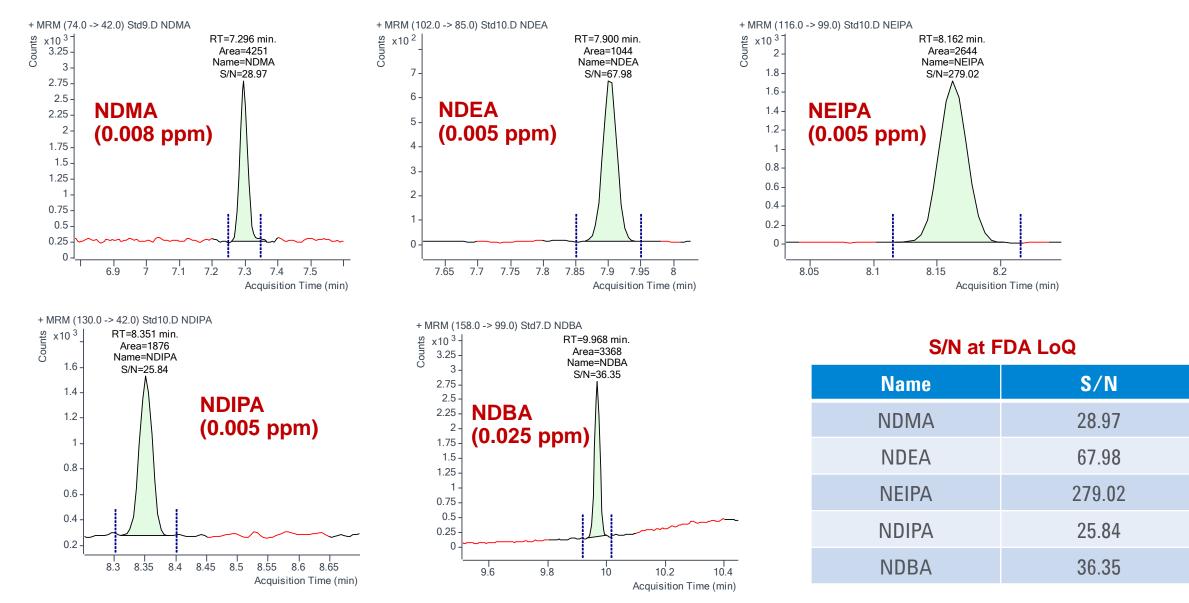

Analysis NDMA & NDEA Using the Agilent 7697A Headspace Sampler, 8890/5977 GC/MSD System

	Target LOQ	Average Recovery	Average Recovery
	1 ppm	1 ppm 0.05 ppm 0.10 pp	
NDMA	0.10	0.056	0.11
NDEA	0.05	0.057	0.11

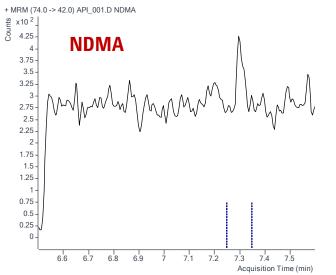

8890 GC/7697A HSS/ 5977B MSD

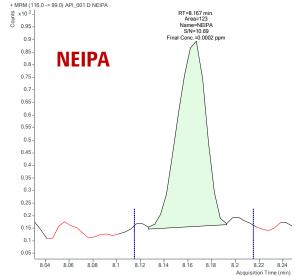
NDMA calibration stats

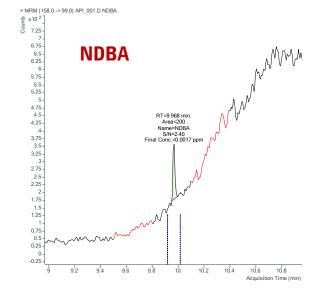
Analysis of Five Nitrosamine Impurities in Drug Products and Drug Substances Using Agilent GC/MS/MS


Impurity	FDA LOQ (ppm)	LOQ (Obtained, in ppm)	Improvement Factor
NDMA	0.008	0.0025	>3
NDEA	0.005	0.0005	10
NEIPA	0.005	0.00025	20
NDIPA	0.005	0.0025	2
NDBA	0.025	0.008	>3

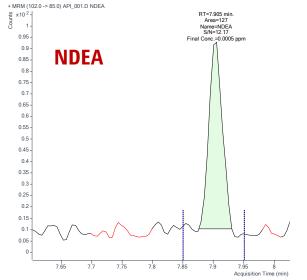
8890 GC/7693 LS/ 7010B TQ

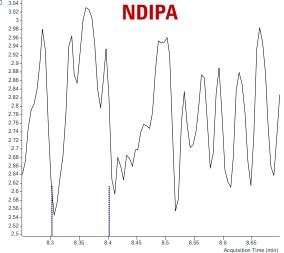


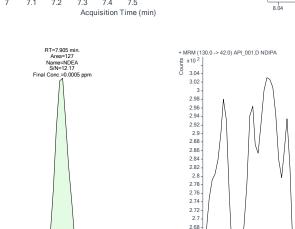

Response at FDA Specified LOQ



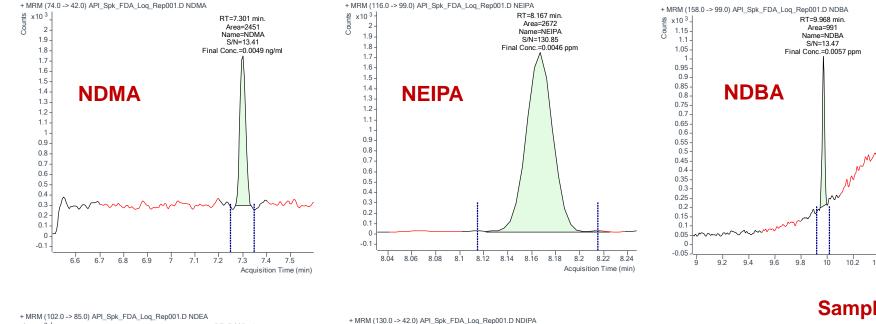
Sample Results (Valsartan API, Extraction 1)

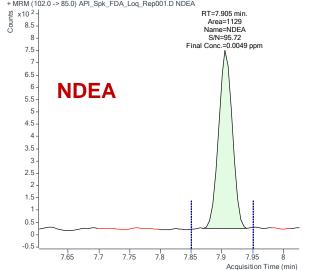


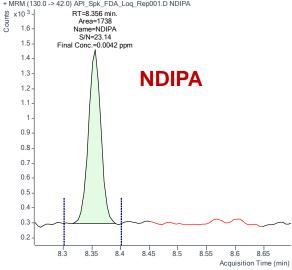


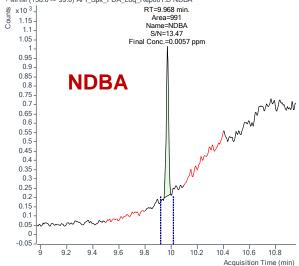


Sample Results

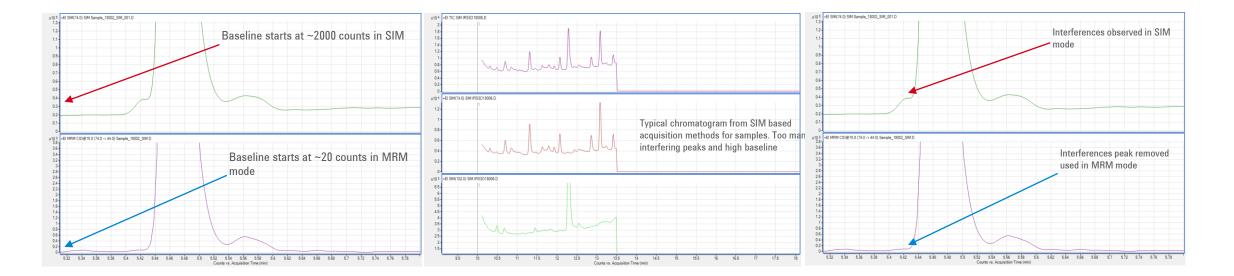

Name	FDA LoQs (ppm)	LoQ Obtained, (ppm)	Sample Results (ppm)
NDMA	0.008	0.0025	ND
NDEA	0.005	0.0005	0.0005
NEIPA	0.005	0.00025	0.0002
NDIPA	0.005	0.0025	ND
NDBA	0.025	0.008	BLQ







Spiking Studies At 0.005 ppm


Sample Recovery (0.005 ppm)

Name	Spiking Level (ppm)	Sample Results (ppm)	Recovery (%)
NDMA	0.005	0.0049	98
NDEA	0.005	0.0049	98
NEIPA	0.005	0.0046	92
NDIPA	0.005	0.0042	84
NDBA	0.005	0.0057	114

March 15, 2024

Detection Enhancements with GC/TQ

- 1. Lower baseline ensures better S/N ratio hence better the method LOQs
- 2. Lower LOQs ensure a future proof system in the possibility of further stringent limits
- 3. MRM transitions reduce the interferences and thereby increase method selectivity and specificity
- 4. Additional Qualifier MRM transitions can be used to confirm the presence/absence of the impurities
- 5. Better linearities across the dynamic range due to method specificity
- 6. Removal of interferences using MRM acquisition ensures reliable quantification

Summary for GCMSD & GCMSMS

Regulatory agencies advise companies on steps to take to avoid nitrosamines in medicines

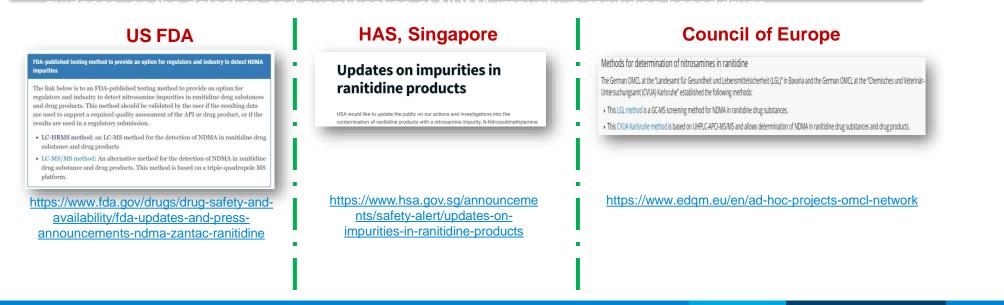
Risky preparations must be tested for nitrosamine contamination via validated and appropriately sensitive analytical methods

Agilent 8890 GC coupled with Agilent 5977 GC/MSD or Agilent 7010B GC/TQ comply with all regulatory directives as well as meet and exceed stringent detection limits for the trace-level Nitrosamine impurities analyses

Agilent GC/MS equipped with a high-efficiency source offers excellent sensitivity, repeatability and precision while outperforming regulatory limits. The GC/MS method is 8-10 times more sensitive than required by current regulations

What are the Challenges of NMDA Analysis using GC/MS?

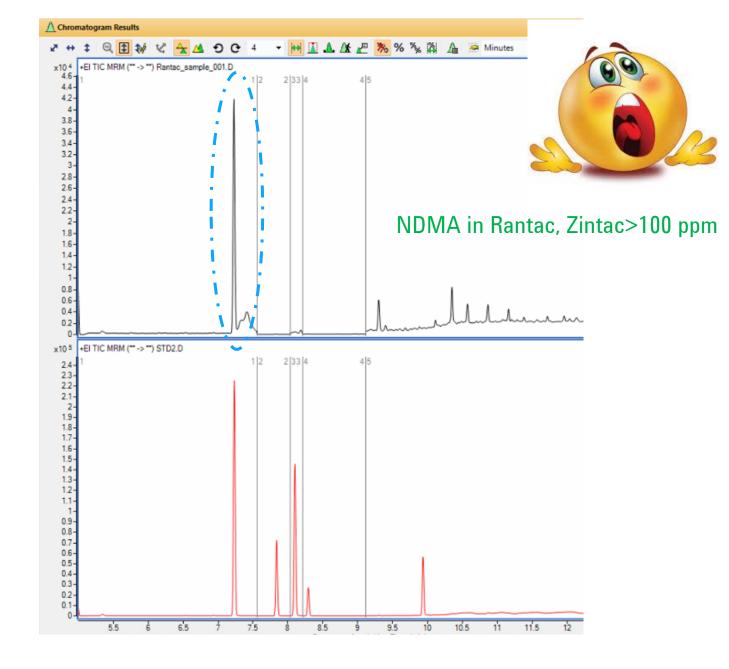
Some concerns with GC/MS


- 1. GCMS may not suitable for detection of NMBA, which is non-volatile.
- 2. GCMS is not the right technique for detecting **NDMA in ranitidine**, due to high temperature degradation of ranitidine into NDMA.
- 3. LOQ depends to a large extent on the purity of the solvent. There are several interferences from NMP, DMSO and DCM
- 4. Two headspace methods with GC/SQ (NMP and DMSO). DMSO reacts with **NDEA** at higher temperature. Higher HSS temperature affects response

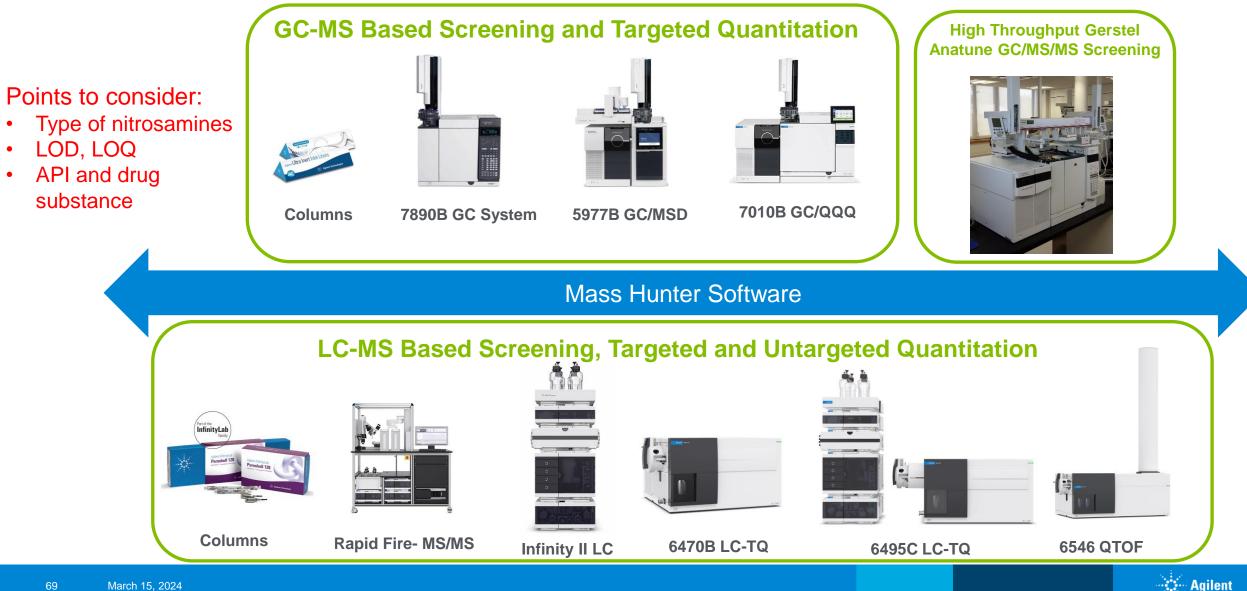
Ranitidine Based Drugs

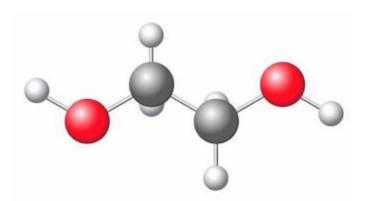
- Ranitidine is a histamine-2 receptor antagonist (acid inhibitor or H2 blocker) and is available as both prescription and over-the-counter drug to treat acid reflux. Examples of H2 receptor blockers include: Ranitidine (Zantac), Nizatidine (Axid), Famotidine (Pepcid, Pepcid AC) and Cimetidine (Tagamet, Tagamet HB).
- N-nitrosodimethylamine (NDMA) impurity was detected in some ranitidine products and the levels were found to increases with time and temperature, and thus ranitidine drugs were recently recalled from the U.S. market

□ Regulatory agencies (for e.g. including US Food and Drug administration (US FDA)) provided



Ranitidine and NDMA


-Ranitidine by GCMS results in elevated levels of NDMA due to conversion at the injector port



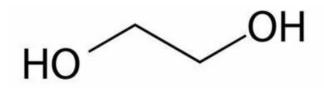
Variety of Analytical Solutions for Nitrosamines in Drug Substances and **Products**

Estimation of Ethylene Glycol and Diethylene Glycol in Propylene Glycol, Glycerin, and Syrup Samples

For Research Use Only. Not for use in diagnostic procedures.

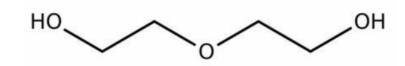
Estimation of Ethylene Glycol and Diethylene Glycol in Propylene Glycol, Glycerin, and Syrup Samples

Propylene glycol and glycerin are commonly used in medicinal syrups as excipients.


The solubility of active ingredients is enhanced by their use during formulation.

These excipients should be tested for any contamination by ethylene glycol (EG) and diethylene glycol (DEG) as mentioned in regulations such as Indian Pharmacopeia and USP-NF monographs. Some USP-NF monographs include, as part of the applicable identity testing, a limit test for DEG and EG. The relevant safety limit for DEG and EG is not more than (NMT) 0.10%, as recognized by the applicable USP-NF monograph.

Ethylene Glycol and Diethylene Glycol in Syrup Samples


Ethylene glycol (EG)

C₂H₆O₂ MW : 62.068 Bp : 197.3 °C

Diethylene glycol (DEG)

 $C_4H_{10}O_3$

MW : 106.12 Bp : 245 °C

Instrument parameters

Parameter	Value		
Inlet Temperature	250 °C		
Inlet Liner	Ultra Inert, low pressure drop, split liner, 4 mm ID (p/n 5190-2295)		
Inlet Septa	Inlet septa, long life, 11 mm (p/n 8010-0239)		
Injection Volume	0.5 µL		
Column Agilent J&W DB-624 GC column, 30 m mm × 3.00 µm, 7 inch cage, (p/n: 125			
Column Flow	Helium, 2.5 mL/min		
Split Ratio	10:1		
	70 °C for 1 min		
Oven Program	6 °C/min to 150 °C, hold 3 min		
	25 °C /min to 245 °C, hold 12 min		
FID Temperature	250 °C		
FID H2 Flow	40 mL/min		
FID Air Flow	300 mL/min		
FID Make Up Gas	Nitrogen, 25 mL/min		

Standard calibration & Sample preparation

Standard solution-1

weighing 100 mg each of EG and DEG in a 100 mL volumetric flask

making up the volume to 100 mL with methanol

with thorough mixing

This solution has a concentration of 1,000 $\mu g/mL$ for EG and DEG

IS solution-1

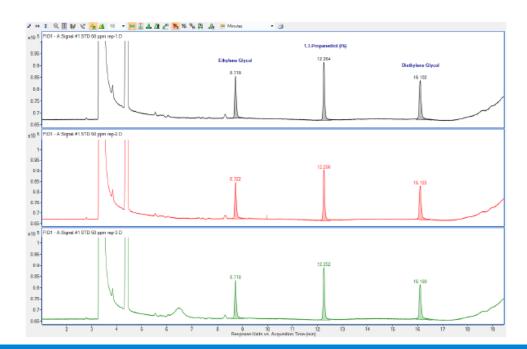
weighing 100 mg of 1,3-propanediol in a 100 mL volumetric flask

making up the volume to 100 mL with methanol with thorough mixing.

This solution has a concentration of $1,000 \mu g/mL$ for 1,3-propanediol.

Sample

500 mg of sample was added to a 10 mL volumetric flask.


500 μL of IS solution was added

the volume was made up to 10 mL with methanol

with thorough shaking.

Three replicates of 50 $\mu g/mL$ EG and DEG standards with IS using methanol as diluent.

	Standard Solution-1, 1,000 µg/mL (mL)	IS Working Solution, 1,000 µg/mL (mL)	Make Up Volume with Methanol (mL)	Final Concentration for EG and DEG (µg/mL)	Final Concentration for 1,3-propanediol (µg/mL)
Calibration Standard-6	5	0.5	10	500	50
Calibration Standard-5	2.5	0.5	10	250	50
Calibration Standard-4	1	0.5	10	100	50
Calibration Standard-3	0.5	0.5	10	50	50
Calibration Standard-2	0.25	0.5	10	25	50
Calibration Standard-1	0.1	0.5	10	10	50

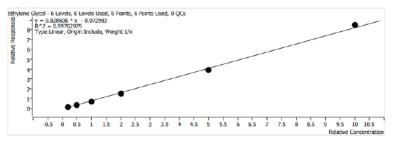
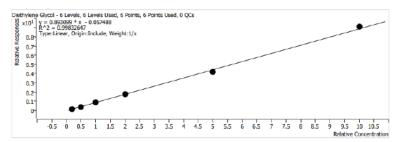
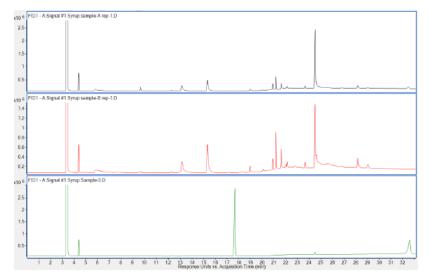
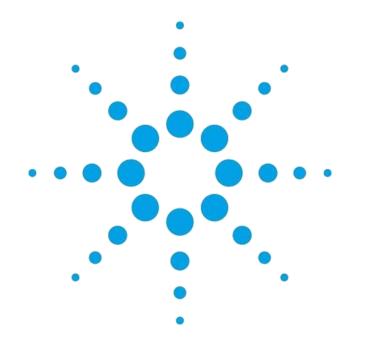



Figure 2. Six-point calibration of EG for 10, 25, 50, 100, 250, and 500 μ g/mL, respectively.



Results Standards and Spike in Syrup sample

	IS RT (min)	IS Area (Counts)
STD-1_10 µg/mL	12.249	113107
STD-2_25 µg/mL	12.252	109688
STD-3_50 µg/mL	12.255	106848
STD-4_100 µg/mL	12.255	110376
STD-5_250 µg/mL	12.244	117225
STD-6_500 µg/mL	12.255	111914
Mean	12.252	111526.333
SD	0.0045	3513.21
%RSD	0.036	3.15


Spiked Sample	EG Results		DEG Results	
Spiked Sample	Calculated Amount (µg/mL)	Recovery (%)	Calculated Amount (µg/mL)	Recovery (%)
200 µg/mL spike-1	208.04	104.02	185.17	92.585
200 µg/mL spike-2	214.14	107.07	187.7	93.85
200 µg/mL spike-3	210.9	105.45	181.68	90.84
Mean	211.03	105.51	184.85	92.43
SD	3.052		3.023	
%RSD	1.446		1.635	

Onlined Community	EG Results		DEG Results	
Spiked Sample	Calculated Amount (µg/mL)	Recovery (%)	Calculated Amount (µg/mL)	Recovery (%)
500 µg/mL spike-1	433.18	86.636	389.61	77.922
500 µg/mL spike-2	429.64	85.928	392.47	78.494
500 µg/mL spike-3	431.82	86.364	385.83	77.166
Mean	431.55	86.31	389.30	77.86
SD	1.786		3.331	
%RSD	0.414		0.856	

Chromatograms of three different brands of syrup samples

Thank you for your attention!

